
ARML Competition 2016

Paul J. Karafiol, Head Writer
Andy Soffer, Associate Head Writer

Chris Jeuell, Lead Editor
Paul Dreyer

Edward Early
Zuming Feng
Benji Fisher

Zachary Franco
Winston Luo

Andy Niedermaier
George Reuter
Graham Rosby

Eric Wepsic

June 3–4, 2016



1 Team Problems

Problem 1. Compute all values of a for which the intersection of the graphs of y ≥
∣∣x
2

∣∣ and y ≤ a|x| + 17 is a
region having area 51.

Problem 2. Let f(x) = logb x and let g(x) = x2 − 4x + 4. Given that f(g(x)) = g(f(x)) = 0 has exactly one
solution and that b > 1, compute b.

Problem 3. Compute all solutions to the following system of equations:

|y| − 2x

|x|
= −1

x|x|+ y|y| = 24.

Problem 4. Two players are playing a game as follows. Integers N and M are each selected independently at
random from the set {1, 2, . . . , 50}. The players begin with an N ×M grid of empty squares. A turn consists
of filling in a single empty square, then filling in all the squares in the same row, and then filling in all the
squares in the same column. The players alternate taking turns until all squares are filled in. Compute the
probability that the player who goes first fills in the last square.

Problem 5. A sequence T1, T2, . . . is called (a, b)-nacci if T1 = a, T2 = b, and for n ≥ 3, Tn = Tn−1 + Tn−2.
Compute the number of (a, b)-nacci sequences of positive integers such that b > a and there exists an integer
k ≥ 3 with Tk = 50.

Problem 6. Complete the number puzzle below. Clues are given for the four rows. (Answers may not begin with
a zero.) Cells inside a region must all contain the same digit, and each region contains a different digit.

1. Product of two primes

2. Multiple of 19

3. A perfect square

4. Multiple of 1-Across

Problem 7. Real numbers x, y, and z are chosen at random from the unit interval [0, 1]. Compute the probability
that max{x, y, z} −min{x, y, z} ≤ 2

3 .

Problem 8. Square ARML has sides of length 11. Collinear points X, Y , and Z are in the interior of ARML
such that 4LXY and 4RXZ are equilateral. Given that Y Z = 2, compute [RLX].

Problem 9. Compute the number of permutations x1, x2, . . . , x10 of the integers −3,−2,−1, . . . , 6 that satisfy the
chain of inequalities

x1x2 ≤ x2x3 ≤ · · · ≤ x9x10.

Problem 10. Compute the greatest integer n for which the decimal representation of 1000
n is of the form

1 . T AS T Y 7 . . ., where the digits T , A, S, and Y are not necessarily distinct.
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2 Answers to Team Problems

Answer 1. − 31
6

Answer 2.
√

3

Answer 3. (5,−1) and (
√

23, 1)

Answer 4. 51
100

Answer 5. 37

Answer 6.

9 3 3 2

4 3 5 6

4 4 4 6

4 6 6 6

Answer 7. 20
27

Answer 8. 119
√
3

6

Answer 9. 240

Answer 10. 968
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3 Solutions to Team Problems

Problem 1. Compute all values of a for which the intersection of the graphs of y ≥
∣∣x
2

∣∣ and y ≤ a|x| + 17 is a
region having area 51.

Solution 1. For a < 0, the graphs of the two functions are shown in the figure below.

In the first quadrant, the two bounding functions are y = x
2 and y = ax+17, so they intersect where x

2 = ax+17.
Moreover, because the triangle in the first quadrant is half of the total area it has area 51

2 . Taking the side

along the y-axis as the base, the height is the x-value where the two lines intersect, hence 1
2 · 17 · x = 51

2 , thus
x = 3. Now 3

2 = 3a+ 17, so a = −31
6 .

Problem 2. Let f(x) = logb x and let g(x) = x2 − 4x + 4. Given that f(g(x)) = g(f(x)) = 0 has exactly one
solution and that b > 1, compute b.

Solution 2. Consider the equation f(g(x)) = 0. Because f(x) = logb(x), this equation holds precisely when
g(x) = 1, no matter what b is. Setting g(x) = x2−4x+4 equal to 1 yields the quadratic equation x2−4x+3 = 0,
which has two solutions, x = 3 and x = 1. Now consider the equation g(f(x)) = 0: g(x) has one root at 2,
so f(x) = 2, which implies that x = b2. Therefore, in order for the equation f(g(x)) = g(f(x)) = 0 to have
exactly one solution, b must equal

√
3.

Problem 3. Compute all solutions to the following system of equations:

|y| − 2x

|x|
= −1

x|x|+ y|y| = 24.

Solution 3. Note that x must be real because otherwise, the first equation would not be satisfied.

Case 1: x is positive. Then 2x
|x| = 2, and the first equation yields y = ±1. The second equation then becomes

x2 ± 1 = 24, so x = 5 (when y = −1) or x =
√

23 (when y = 1).

Case 2: x is negative. Then 2x
|x| = −2, but in this case, the first equation becomes |y| = −3, which is impossible.

Thus the two solutions are (5,−1) and (
√
23, 1).
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Problem 4. Two players are playing a game as follows. Integers N and M are each selected independently at
random from the set {1, 2, . . . , 50}. The players begin with an N ×M grid of empty squares. A turn consists
of filling in a single empty square, then filling in all the squares in the same row, and then filling in all the
squares in the same column. The players alternate taking turns until all squares are filled in. Compute the
probability that the player who goes first fills in the last square.

Solution 4. The outcome of the game is determined by the parity of min(N,M). This is because each time a
player takes a turn, a row and a column that are previously not completely filled in (i.e., the row and col-
umn that contain the square selected on that turn) are now both completely filled in. Therefore, as soon
as min(N,M) turns are taken, either all the rows will be completely filled, or all the columns, which means
that the entire grid is filled in. Therefore the first player will fill in the last square if and only if min(N,M) is odd.

To compute the probability than min(N,M) is odd, count the number of pairs (N,M) satisfying this con-
dition, and then divide by 50× 50 = 2500, the total number of possible choices of N and M . First consider the
case when N < M . There are 25 choices for N , from 1 to 49, and each results in 50 −N choices for M (i.e.,
the number of numbers larger than N). So there are 49 + 47 + . . .+ 3 + 1 = 252 = 625 such pairs (N,M). The
case when M < N is symmetric, so there are another 625 cases there. Then there are another 25 cases where
N = M , because N and M can equal any odd number between 1 and 50. This is a total of 625+625+25 = 1275
pairs, so the desired probability is 1275

2500 = 51
100 .

Problem 5. A sequence T1, T2, . . . is called (a, b)-nacci if T1 = a, T2 = b, and for n ≥ 3, Tn = Tn−1 + Tn−2.
Compute the number of (a, b)-nacci sequences of positive integers such that b > a and there exists an integer
k ≥ 3 with Tk = 50.

Solution 5. The sequence Tk must grow at least as fast as the (1, 2)-nacci sequence 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . ,
thus for k ≥ 9, Tk > 50.

If k = 3, then a+ b = 50, which has 24 solutions with a being any integer from 1 to 24 inclusive.
If k = 4, then a+ 2b = 50. Now a must be even and a ≤ 16, so there are 8 solutions for k = 4.
If k = 5, then 2a+ 3b = 50. Now a ≡ 1 (mod 3) and a < 10, so there are 3 solutions for k = 5.
If k = 6, then 3a+ 5b = 50. Now a must be a multiple of 5 and the only solution is (5, 7).
If k = 7, then 5a+ 8b = 50. Now b must be a multiple of 5 and the only solution is (2, 5).
If k = 8, then 8a+ 13b = 50, which has no solutions with a < b.

Thus the desired number of (a, b)-nacci sequences is 24 + 8 + 3 + 1 + 1 = 37.

Problem 6. Complete the number puzzle below. Clues are given for the four rows. (Answers may not begin with
a zero.) Cells inside a region must all contain the same digit, and each region contains a different digit.

1. Product of two primes

2. Multiple of 19

3. A perfect square

4. Multiple of 1-Across

Solution 6. Consider first 1-Across, which is of the form ABBB. 4-Across is a multiple of 1-Across, and of
a different form, so they are not equal. Because both are four-digit numbers, A must be less than 5.

Next look at 2-Across. It is a four-digit multiple of 19 of the form AAAB, where A and B are the same digits
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as above. Therefore 2-Across equals 1110A + B, which is equivalent to 8A + B mod 19. Because 2-Across
is a multiple of 19 and A < 5, the possibilities for (A,B) are (2, 3) and (4, 6).

Therefore 1-Across is either 2333 or 4666. The four-digit multiples of 2333 are 4666, 6999, and 9332. Only
9332 fits the pattern of 4-Across, so 4-Across is 9332. Because the digits in each region are distinct, 1-
Across must be 4666.

Then 2-Across is 4446. Filling in the digits that are the same in each region, 3-Across must be 43X6,
where X is 0, 1, 5, 7, or 8, because these are the only unused digits. Noting that 3-Across is a perfect square
and that 4356 = 662, 3-Across is 4356.

9 3 3 2

4 3 5 6

4 4 4 6

4 6 6 6

Problem 7. Real numbers x, y, and z are chosen at random from the unit interval [0, 1]. Compute the probability
that max{x, y, z} −min{x, y, z} ≤ 2

3 .

Solution 7. Consider points lying in a unit cube in the first octant with one corner at the origin. To find the
volume of the region of points where the inequality holds, take cross-sections for each value of z from 0 to 1.
For any particular value of z, the values of x and y must satisfy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, − 2

3 ≤ y − x ≤ 2
3 ,

z − 2
3 ≤ x ≤ z + 2

3 , and z − 2
3 ≤ y ≤ z + 2

3 .

Depending on the value of z, the resulting region is a square of area 4
9 (when z = 0 or 1), a hexagon of

area 4
9 + 4z

3 (when 0 < z < 1
3 ), a hexagon of area 8

9 (when 1
3 ≤ z ≤

2
3 ), or a hexagon of area 4

9 + 4(1−z)
3 (when

2
3 < z < 1). The region where z = 1

6 is shown.

In the cases where z is not between 1
3 and 2

3 , the area changes linearly with z and hence can be averaged
to 1

2

(
4
9 + 8

9

)
= 2

3 . This area corresponds to 2
3 of the z-values, with the other 1

3 having area 8
9 , for a total

probability of 2
3 ( 2

3 ) + 1
3 ( 8

9 ) = 20
27 .
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Problem 8. Square ARML has sides of length 11. Collinear points X, Y , and Z are in the interior of ARML
such that 4LXY and 4RXZ are equilateral. Given that Y Z = 2, compute [RLX].

Solution 8. First note that X cannot be between Y and Z, because then the side lengths of triangles LXY and
RXZ would each be less than Y Z = 2, which would mean that XL and XR would each be less than 2, which
is impossible because XL + XR ≥ LR = 11

√
2. Without loss of generality, let Y lie between X and Z. Let

XY = Y L = LX = x, so that XZ = ZR = RX = x + 2. In triangle RLX, angle LXR has measure 120◦

because angles LXY and ZXR are each 60◦. Applying the Law of Cosines then gives

x2 + (x+ 2)2 − (11
√

2)2

2x(x+ 2)
= cos 120◦ = −1

2
.

Solving this quadratic for x gives x = −1 ±
√

241
3 , and the positive solution for x is used because it is a side

length. So x = −1 +
√

241
3 and x+ 2 = 1 +

√
241
3 , and the area [RLX] is

1

2
x(x+ 2) sin 120◦ =

1

2
·
(

241

3
− 1

)
·
√

3

2
=

119
√
3

6
.

Problem 9. Compute the number of permutations x1, x2, . . . , x10 of the integers −3,−2,−1, . . . , 6 that satisfy the
chain of inequalities

x1x2 ≤ x2x3 ≤ · · · ≤ x9x10.

Solution 9. First note that no two negative numbers can occur consecutively because otherwise, either the re-
sulting positive product would have to be followed by a non-positive product once the negatives are exhausted,
or it would have to occur at the end but there are too many positive terms for that to be possible. Thus the
sequence must start with alternating positive and negative values. Each inequality xixi+1 ≤ xi+1xi+2 implies
that xi < xi+2 if xi+1 > 0 and xi > xi+2 if xi+1 < 0 (the inequalities are strict because the xis are distinct).
The two main cases to consider are x1 = −3 and x2 = −3.

If x1 = −3, then x3 = −2, x5 = −1, and either x6 = 0 or x7 = 0. If x6 = 0, then the positive entries
(x2, x4, x7, x8, x9, and x10) must satisfy x2 > x4, x7 < x9, and x8 < x10. There are 6!

2!·2!·2! = 90 such sequences.
If x7 = 0, then the positive entries (x2, x4, x6, x7, x8, and x10) must satisfy x2 > x4 > x6, and x8 < x10 for

6!
3!·2!·1! = 60 more.

If x2 = −3, then x4 = −2, x6 = −1, and either x7 = 0 or x8 = 0. If x7 = 0, then the positive entries
(x1, x3, x4, x8, x9, and x10) must satisfy x1 > x3 > x5, and x8 < x10 for another 60. If x8 = 0, then the positive
entries (x1, x3, x5, x7, x9, and x10) must satisfy x1 > x3 > x5 > x7, for 6!

4!·1!·1! = 30 more.

The desired number of permutations is therefore 90 + 60 + 60 + 30 = 240.

Problem 10. Compute the greatest integer n for which the decimal representation of 1000
n is of the form

1 . T AS T Y 7 . . ., where the digits T , A, S, and Y are not necessarily distinct.

Solution 10. In order for the integral part of 1000
n to be 1, n must be between 501 and 1000. Let m = 1000− n.

Then
1000

n
=

1000

1000−m
=

1

1− m
1000

= 1 +
m

1000
+

m2

10002
+

m3

10003
+ . . . .

For example, if n = 998, then 1000
n begins 1.002004008016032064 . . . and each block of 3 digits following the

decimal point is a power of 2 until they begin to overlap.
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To maximize n, first consider attempting to find a solution with T = 0, which implies m < 100, by the
previous analysis, because the first block of 3 digits equals either m or m plus the thousands digit of m2.
Because the ones digit of the second block of 3 digits is 7, and m2 cannot end in 7 (as no squares end in 7),
the m3 block must overlap into the m2 block. Therefore m3 > 1000, so m > 10.

Because T = 0 by (optimistic) assumption, and therefore the part of m2 in the second block must have a
zero in the hundreds place, the goal is to find four-digit squares with a zero in the hundreds place. (Note that
m cannot have a two-digit square because m > 10, and the m3 block will not overlap onto the 0 from the
hundreds place of the second block as long as m3 < 100,000.)

The first square with a zero in the hundreds place is 322 = 1024, which corresponds to m = 32, m2 = 1024,
m3 = 32768. Then the expansion for 1000

1000−m begins

1 +
32

1000
+

1024

10002
+

32768

10003
+ · · ·

= 1 + 0.032 + 0.001024 + 0.000032768 + · · ·
= 1.033056768 + · · · .

This fits the pattern, except the sixth decimal digit is a 6 instead of a 7. However, m4 = 10242 is just over
1 million, so its first digit overlaps onto the 6, making it a 7. Therefore m = 32, which corresponds to n = 968
giving the maximal n satisfying the given criteria. This can be confirmed by computing 1000

968 = 1.033057 . . . .

Note: The same method as in the solution can be used for negative integers m that are close to 0; the
geometric series would have alternating signs. Also, replacing the 1000s with 10ps yields a similar result, but
instead of blocks of 3 digits apiece, the blocks will each have p digits.
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4 Power Question 2016: Taxicab Geometry

Instructions: The power question is worth 50 points; each part’s point value is given in brackets next to the part.
To receive full credit, the presentation must be legible, orderly, clear, and concise. If a problem says “list” or “com-
pute,” you need not justify your answer. If a problem says “determine,” “find,” or “show,” then you must show
your work or explain your reasoning to receive full credit, although such explanations do not have to be lengthy. If a
problem says “justify” or “prove,” then you must prove your answer rigorously. Even if not proved, earlier numbered
items may be used in solutions to later numbered items, but not vice versa. Pages submitted for credit should be
NUMBERED IN CONSECUTIVE ORDER AT THE TOP OF EACH PAGE in what your team considers to be
proper sequential order. PLEASE WRITE ON ONLY ONE SIDE OF THE ANSWER PAPERS. Put the TEAM
NUMBER (not the team name) on the cover sheet used as the first page of the papers submitted. Do not identify
the team in any other way.

In standard coordinate (Euclidean) geometry, if A = (x1, y1) and B = (x2, y2), then the distance between A and B
is given by the Euclidean distance function: dE(A,B) =

√
(x2 − x1)2 + (y2 − y1)2. In this Power Question, we

investigate what happens when distance is measured using the taxicab distance function,

dT (A,B) = |x2 − x1|+ |y2 − y1|.

This distance is called the taxi-distance between A and B.

1. This problem will help you become familiar with taxi-distances.

a. Compute the taxi-distance between the points (2, 6) and (7,−2). [1 pt]

b. Compute the coordinates of a point whose Euclidean distance from (3, 2) is 5 and whose taxi-distance
from (3, 2) is also 5. [1 pt]

c. Compute the coordinates of a point whose Euclidean distance from (3, 2) is 5 and whose taxi-distance
from (3, 2) is 7. [1 pt]

In Euclidean geometry, one possible definition of the line segment AB is the set of points P such that AP+PB = AB,
or dE(A,P ) + dE(P,B) = dE(A,B). This definition does not work as well in taxicab geometry!

2. Let A = (0, 4) and B = (4, 0).

a. Show that P = (1, 3) satisfies dT (A,P ) + dT (P,B) = dT (A,B). [1 pt]

b. Find the coordinates of a point P not on the line x+ y = 4 satisfying dT (A,P ) + dT (P,B) = dT (A,B).
[1 pt]

c. Find the set of all points P such that dT (A,P ) + dT (P,B) = dT (A,B), and justify your answer. [3 pts]

As in Euclidean geometry, two triangles are congruent if and only if the lengths of corresponding sides and the
measures of corresponding angles are equal. In Euclidean geometry, this measure-congruence is equivalent to
transformation-congruence: two triangles are transformation-congruent if and only if one is the image of the other
under a composition of reflections, rotations, and translations. (Actually, reflections alone suffice, but that result is
beyond the scope of this Power Question.) For the remainder of this Power Question, the symbol ∼= will be used
exclusively to denote measure-congruence; we write ∼=T to emphasize that we are using taxicab measure.

3. Let’s investigate whether the equivalence between measure- and transformation-congruence holds in taxicab
geometry. Suppose that A = (xA, yA) and similarly for other named points.

a. If 4A′B′C ′ is the image of 4ABC under the translation (x, y) 7→ (x + h, y + k), are the taxi-lengths of
the sides of 4A′B′C ′ equal to those of 4ABC? Justify your answer. [1 pt]

b. If 4A′B′C ′ is the image of 4ABC under a reflection in the line y = k, are the taxi-lengths of the sides
of 4A′B′C ′ equal to those of 4ABC? Justify your answer. [1 pt]

c. Let O = (0, 0), R = (8, 0), D = (0, 4), and let 4O′R′D′ be the image of 4ORD under a (Euclidean)
rotation of 45◦ counterclockwise about the origin. Is 4ORD ∼=T 4O′R′D′? Justify your answer. [2 pts]
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4. Let O have coordinates (0, 0), let P have coordinates (1, 0), and let A be the point (4, 2). The point B has
coordinates (m,n), where m and n are both positive integers, m is relatively prime to n, and ∠BOA ∼= ∠AOP
(considered as Euclidean angles).

a. Compute the ordered pair (m,n). [2 pts]

b. Compute the taxi-lengths of the segments intercepted by ∠BOA and ∠AOP on the line x+ y = 1. [2 pts]

The computation in the previous item is problematic, for the following reason. A taxi-circle is the set of all points
that are a fixed taxi-distance from a given point, and the segments whose lengths you computed in 4b are actually
arcs on a unit taxi-circle centered at the origin. So angles congruent in the Euclidean sense do not necessarily inter-
cept taxi-congruent arcs.

One way to fix this problem is to define the measure of an angle analogously to the way the radian measure of
an angle is defined in Euclidean geometry, namely, as a quotient. The numerator is the length of the arc that the
angle intercepts on a circle centered at the angle’s vertex. The denominator is the radius of that circle. If P and R
are equidistant from Q, then the measure of ∠PQR in taxi-radians is given by the formula

mT∠PQR =
taxi-length of the arc from P to R on the taxi-circle centered at Q passing through P

dT (Q,P )
.

5. Let’s flesh out the above definition with an example.

a. Find an equation to describe the taxi-circle centered at the origin of radius 17. [1 pt]

b. Compute the value of taxi-pi, πT , by dividing the semi-taxi-circumference of the taxi-circle from part 5a
by its radius. [1 pt]

c. Show that the value you computed in part 5b is independent of the taxi-circle’s radius. [2 pts]

d. Given that C = (3, 1), O = (0, 0), and B = (−1, 3), compute mT∠COB. [1 pt]

Using taxi-circles and taxi-angles, define a rotation by θ taxi-radians about the origin as follows. The point P ′ is the
image of P under a counterclockwise rotation of θ taxi-radians around O = (0, 0) if and only if dT (O,P ) = dT (O,P ′)
and the measure of the taxi-arc from P to P ′ (going counterclockwise around the taxi-circle centered at O) is
dT (O,P ) · θ.

6. Let O = (0, 0), A = (8, 0), and R = (3, 1).

a. Let 4O′A′R′ be the image of 4OAR under a rotation of 1 taxi-radian about the origin. Compute the
coordinates of O′, A′, and R′. [3 pts]

b. Is 4O′A′R′ ∼=T 4OAR? Justify your answer. [3 pts]

7. We now consider conditions for two triangles to be measure-congruent in Euclidean geometry and apply them
to taxicab geometry to discover whether or not measure-congruence still holds. Let 4MOD have vertices
M = (0, 2), O = (0, 0), and D = (2, 0).

a. Show that there exists a triangle 4CAB such that dT (C,A) = dT (M,O), dT (A,B) = dT (O,D), and
mT∠CAB = mT∠MOD, but 4MOD �T 4CAB. (Thus SAS congruence does not hold in taxicab
geometry.) [2 pts]

b. Show that there exists a triangle 4PIG such that dT (P, I) = dT (M,O), dT (I,G) = dT (O,D), and
dT (P,G) = dT (M,D), but4MOD �T 4PIG. (Thus SSS congruence does not hold in taxicab geometry.)

[2 pts]

8. Define the taxi-cosine and taxi-sine of an angle as follows:

cosT ∠ACB =
dE(C,A) · dE(C,B)

dT (C,A) · dT (C,B)
cos∠ACB

sinT ∠ACB =
dE(C,A) · dE(C,B)

dT (C,A) · dT (C,B)
sin∠ACB,

where cos∠ACB and sin∠ACB are the ordinary (Euclidean) cosine and sine functions, respectively.
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a. Given A = (3, 0), O = (0, 0), and B = (3, 4), compute cosT ∠AOB. [1 pt]

b. Show that if
−→
OA is parallel to the x-axis, then cosT ∠AOB =

cos∠AOB
| cos∠AOB|+ | sin∠AOB|

. [3 pts]

c. Let
−−→
QP be parallel to the x-axis, and let A and B be points not on

−−→
QP . Show that

cosT ∠AQB =
cos∠AQB

(| cos∠AQP |+ | sin∠AQP |)(| cos∠BQP |+ | sin∠BQP |)
.

[3 pts]

9. Suppose that triangle ABC is given with AB parallel to the x-axis, and that the perpendicular dropped from

C to
←→
AB intersects AB at C ′ and has taxi-length hT . As with conventional trigonometry, let aT = dT (B,C),

bT = dT (A,C), and cT = dT (A,B). Prove the following:

a. aT = bT + cT − 2bT cosT A. [3 pts]

b. bT = aT + cT − 2aT cosT B. [2 pts]

c. cT =
a2T + b2T − 2aT bT cosT C

aT + bT
. [3 pts]

10. Given 4ABC, prove that
aT

sinT A
=

bT
sinT B

=
cT

sinT C
, where aT , bT , and cT are defined as in the previous

problem. [4 pts]
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5 Solutions to Power Question

1. Compute from the given definition:

a. |7− 2|+ |−2− 6| = 13.

b. There are four points that can found by moving from (3, 2) along vectors parallel to the coordinate axes.
These points are (8, 2), (−2, 2), (3, 7), and (3,−3). One of these is sufficient to answer the question.

c. The classic 3−4−5 right triangle gives many more possibilities: (3± 3, 2± 4) and (3± 4, 2± 3). (One of
these is sufficient to answer the question.)

2. a. dT (A,P ) + dT (P,B) = |1− 0|+ |3− 4|+ |4− 1|+ |0− 3| = 8 = |4− 0|+ |0− 4| = dT (A,B).

b. Many solutions exist (see part c below), but (2, 4) is one such point.

c. Because dT (A,B) = 8, to move from A to B, find all points P (x, y) such that |x−0|+|y−4|+|4−x|+|0−y| =
8. If 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4, the left hand side of the equation simplifies to x + (4 − y) + (4 − x) + y,
which equals 8 for all such x and y. On the other hand, if x < 0 and 0 ≤ y ≤ 4, then the left hand side of
the equation simplifies to 4− 2x+ (4− y) + y = 8− 2x, and for x < 0, 8− 2x > 8. Analogous arguments
show that no points with x > 4, or y < 0, or y > 4 satisfy the condition. Hence the solution set is the
square 0 ≤ x ≤ 4, 0 ≤ y ≤ 4.

Alternate solution: Let P = (x, y), so that dT (A,P ) + dT (P,B) = |x− 0|+ |y− 4|+ |4− x|+ |0− y| =
|4−x|+|x−0|+|4−y|+|y−0|. For any real number r, |r| ≥ r, and equality holds if and only if r ≥ 0. Apply-
ing this observation to each term in the above sum, dT (A,P )+dT (P,B) ≥ (4−x)+(x−0)+(4−y)+(y−0) =
8 = dT (A,B), with equality if and only if each of 4 − x, x − 0, 4 − y, y − 0 is nonnegative. Hence the
solution set is the square 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4.

3. a. Let A = (x1, y1) and let B = (x2, y2). Then dT (A,B) = |x2 − x1| + |y2 − y1|. On the other hand,
A′ = (x1+h, y1+k) and B′ = (x2+h, y2+k), yielding dT (A′, B′) = |(x2+h)−(x1+h)|+|(y2+k)−(y1+k)| =
|x2 − x1| + |y2 − y1| = dT (A,B). The same argument would apply to the taxi-lengths of BC and AC.
Therefore the taxi-lengths of the sides are preserved under translation.

b. Let A = (x1, y1) and let B = (x2, y2). The reflection takes (x, y) = (x, k + (y − k)) to (x, k − (y − k)) =
(x, 2k − y). Hence A′ = (x1, 2k − y1) and B′ = (x2, 2k − y2). Thus dT (A′, B′) = |x2 − x1|+ |(2k − y2)−
(2k − y1)| = |x2 − x1|+ |y1 − y2| = dT (A,B). Analogous arguments apply to the taxi-lengths of BC and
AC, so the taxi-lengths of the sides are preserved under reflection in a horizontal line. (Note: It would
be straightforward to show the same result for reflection in a vertical line. What might be difficult about
reflecting in an oblique line?)

c. O′ = (0, 0), R′ = (4
√

2, 4
√

2), D′ = (−2
√

2, 2
√

2). Notice that dT (O,D) = 4, dT (D,R) = 12, and
dT (O,R) = 8, but dT (O′, R′) = 8

√
2. Therefore 4ORD �T 4O′R′D′.

4. a. Let θ be the angle between the positive x-axis and the ray
−→
OA. Then tan θ = 1

2 . The ray
−−→
OB makes

an angle of 2θ with the positive x-axis, so using the double-angle identity from trigonometry yields

tan 2θ =
2 tan θ

1− tan2 θ
=

1

1−
(
1
2

)2 =
4

3
. Hence B lies on the line y = 4

3x. Because m and n can have no

prime factors in common, m = 3 and n = 4. The desired point is (3, 4).

b. The rays
−→
OA and

−−→
OB intersect the line x+y = 1 at

(
2
3 ,

1
3

)
and

(
3
7 ,

4
7

)
respectively. Note that dT

(
P, ( 2

3 ,
1
3 )
)

=

|1− 2
3 |+ |0−

1
3 | =

2
3 . However, dT

((
2
3 ,

1
3

)
,
(
3
7 ,

4
7

))
= | 37 −

2
3 |+ |

4
7 −

1
3 | =

10
21 . Therefore central angles with

the same Euclidean angle measure can intercept arcs of different taxi-lengths on the unit taxi-circle.

5. a. The taxi-circle is the set of all points (x, y) such that |x| + |y| = 17. This equation describes a square
centered at the origin with vertices (±17, 0) and (0,±17); the sides of the square lie on the lines x+y = 17,
x+ y = −17, x− y = 17, and x− y = −17.

b. The semi-taxi-circumference of this circle is 68, because dT ((17, 0), (0, 17)) = dT ((0, 17), (−17, 0)) = 34.
(Note that the distance along the arc is, as usual, longer than the straight-line taxi-distance
dT ((17, 0), (−17, 0)), which is simply 34.) The radius of the circle is 17. So πT = 68/17 = 4.
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c. In general, the taxi-circle of radius r centered at the origin is given by the equation |x| + |y| = r,
and one semicircle has endpoints (r, 0) and (−r, 0). Hence the arc length is simply dT ((r, 0), (0, r)) +
dT ((0, r), (−r, 0)) = 2r+ 2r = 4r. Therefore πT = 4r/r = 4. (As an interesting exercise, you might try to
show that this result holds for any taxi-semicircle with endpoints (x, y) and (−x,−y).)

d. These points are both found on a taxi-circle of radius 4.

mT∠COB =
taxi-length of the arc from C to B on taxi-circle O

dT (O,C)
=

8

4
= 2 taxi-radians.

6. a. First note that O′ = O because O is the center of rotation. To find A′, note that dT (O,A) = 8, so the
arc from A to A′ on the circle centered at O passing through A must also have length 8, and if A′ is in
the first quadrant, then it lies on the line x + y = 8. These conditions are satisfied by the point (4, 4).
Similarly, R′ must lie on the line x + y = 4 and dT (R,R′) = 4. Assuming that 0 < x < 3 and 1 < y < 4
yields dT (R,R′) = (3 − x) + (y − 1) = y − x + 2. Hence the desired point satisfies both x + y = 4 and
y − x+ 2 = 4, yielding x = 1, y = 3 as the unique solution. Thus R′ = (1, 3).

Alternate solution: First note that O′ = O because O is the center of rotation. Before considering the
other points, let P = (x, y) be any point in the first quadrant and let 0 ≤ r ≤ x. Then Q = (x− r, y + r)
is also in the first quadrant, Q and P are on the same taxi-circle centered at O, and dT (P,Q) = 2r.
Apply this observation to A = (8, 0) with r = 1

2dT (O,A) = 4 to find A′ = (8−4, 0 + 4) = (4, 4). Similarly,
take P = B = (3, 1) and r = 1

2dT (O,B) = 2 to find B′ = (3− 2, 1 + 2) = (1, 3).

b. By construction, dT (O,A) = dT (O,A′) and dT (O,B) = dT (O,B′). However, dT (A,B) = |3−8|+|1−0| = 6
while dT (A′, B′) = |1− 4|+ |3− 4| = 4. Hence the two triangles are not measure-congruent.

7. a. There are many examples. One such example is 4CAB with vertices C(−1, 1), A(0, 0), and B(1, 1). Then
dT (C,A) = dT (M,O) = 2, dT (A,B) = dT (O,D) = 2, and mT∠A ∼= mT∠O = πT /2, but 4MOD �T
4CAB because dT (C,B) = 2 6= dT (M,D).

b. There are many examples. One such example is 4PIG with vertices P (−1, 1), I(0, 0), and G(2, 0). Then
dT (P, I) = dT (M,O) = 2, dT (I,G) = dT (O,D) = 2, and dT (P,G) = dT (M,D) = 4, but 4MOD �T
4PIG because mT∠PIG > mT∠MOD.

8. a. To use the formula, note that dE(O,A) = 3, dE(O,B) = 5, dT (O,A) = 3, dT (O,B) = 7, cos∠AOB = 3
5 ,

and sin∠AOB = 4
5 . Then cosT ∠AOB = 3·5

3·7 ·
3
5 = 3

7 . (Similarly, sinT ∠AOB = 3·5
3·7 ·

4
5 = 4

7 .)

b. Consider the diagram below.

B' AO

B

Because
−→
OA is parallel to the x-axis, dE(O,A) = dT (O,A). Then

cosT ∠AOB =
dE(O,A) · dE(O,B)

dT (O,A) · dT (O,B)
cos∠AOB =

dE(O,B)

dT (O,B)
cos∠AOB.

Let B′ be the foot of the perpendicular from B to
←→
OA, so that dT (O,B) = dE(O,B′) + dE(B′, B). Then

cosT ∠AOB =
dE(O,B)

dE(O,B′) + dE(B′, B)
cos∠AOB =

1
dE(O,B′)
dE(O,B) + dE(B,B′)

dE(O,B)

cos∠AOB.

12



Substituting | cos∠AOB| for dE(O,B′)
dE(O,B) and | sin∠AOB| for dE(B,B′)

dE(O,B) yields the desired result. (The reader

may wish to show that, under these conditions, cosT ∠AOB + sinT ∠AOB = 1.)

c. Let the feet of the altitudes from A and B to
←→
PQ be A′ and B′, respectively, as shown in the diagram below.

B'A'Q P

A

B

Then dT (Q,A) = dE(Q,A′) + dE(A′, A) and dT (Q,B) = dE(Q,B′) + dE(B′, B). Using the definition
yields

cosT ∠AQB =
dE(Q,A) · dE(Q,B)

dT (Q,A) · dT (Q,B)
cos∠AQB

=
1(

dE(Q,A′) + dE(A,A′)

dE(Q,A)

)
·
(
dE(Q,B′) + dE(B,B′)

dE(Q,B)

) cos∠AQB

=
1(

dE(Q,A′)

dE(Q,A)
+
dE(A,A′)

dE(Q,A)

)
·
(
dE(Q,B′)

dE(Q,B)
+
dE(B,B′)

dE(Q,B)

) cos∠AQB.

On the other hand, dE(Q,A′)
dE(Q,A) = | cos∠AQP |, dE(A′,A)

dE(Q,A) = | sin∠AQP |, and similarly dE(Q,B′)
dE(Q,B) = | cos∠BQP |,

dE(B′,B)
dE(Q,B) = | sin∠BQP |. Hence the right side can be rewritten as

cos∠AQB
(| cos∠AQP |+ | sin∠AQP |)(| cos∠BQP |+ | sin∠BQP |)

,

which is the desired result.

Alternate solution: Let the feet of the altitudes from A and B to
←→
PQ be A′ and B′, respectively.

Then

dT (Q,A) = dE(Q,A′) + dE(A′, A)

= dE(Q,A) · | cos∠AQP |+ dE(Q,A) · | sin∠AQP |
= dE(Q,A) ·

(
| cos∠AQP |+ | sin∠AQP |

)
,

so dE(Q,A)/dT (Q,A) =
(
| cos∠AQP | + | sin∠AQP |

)−1
. The analogous formula for dE(Q,B)/dT (Q,B)

is derived in the same way. Substituting these expressions into the definition of the taxi-cosine yields

cosT ∠AQB =
dE(Q,A) · dE(Q,B)

dT (Q,A) · dT (Q,B)
cos∠AQB

=
cos∠AQB

(| cos∠AQP |+ | sin∠AQP |)(| cos∠BQP |+ | sin∠BQP |)
,

which is the desired result.

9. For these three problems, the following lemma will be useful:

Lemma: Suppose that 4PQR is a right triangle with right angle at Q and PQ parallel to the x-axis. Then

cosT ∠P = dT (P,Q)
dT (P,R) .
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Proof of Lemma: Because PQ is parallel to the x-axis, the result from 8b applies, and cosT ∠P = cos∠P
| cos∠P |+| sin∠P | .

In this situation, cos∠P = dE(P,Q)
dE(P,R) and sin∠P = dE(Q,R)

dE(P,R) , so substitute to obtain the following:

cosT ∠P =

dE(P,Q)
dE(P,R)∣∣∣dE(P,Q)

dE(P,R)

∣∣∣+
∣∣∣dE(Q,R)
dE(P,R)

∣∣∣
=

dE(P,Q)

|dE(P,Q)|+ |dE(Q,R)|
.

However, P and Q lie on the same horizontal line and Q and R lie on the same vertical line, so dE(P,Q) =
dT (P,Q) and dT (P,R) = dE(P,Q) + dE(Q,R), yielding the desired result. 2

Consider the diagram below.

hT

C'A B

C

a. Because dT (A,C) = dT (A,C ′) + dT (C ′, C), it follows that dT (C,C ′) = dT (A,C) − dT (A,C ′) and analo-
gously that dT (C,C ′) = dT (B,C)− dT (B,C ′). Then dT (B,C) = dT (A,C) + dT (A,B)− 2 · dT (A,C ′) =

bT + cT − 2dT (A,C ′). The lemma applies to angle A in 4AC ′C, and cosT ∠CAC ′ =
dT (A,C ′)

dT (A,C)
implies

dT (A,C ′) = dT (A,C) · cosT ∠A. Substituting this expression for dT (A,C ′) into the equation for dT (B,C)
yields the first equation.

b. The second equation is derived similarly. As before, dT (A,C) = dT (B,C) + dT (A,B) − 2 · dT (A,C ′) =

aT +cT −2dT (A,C ′). Again, apply the lemma to angle B in 4BC ′C to obtain cosT ∠CBC ′ =
dT (B,C ′)

dT (B,C)
,

yielding dT (B,C ′) = dT (B,C) · cosT ∠B. Substituting this result into the previous equation yields
dT (A,C) = aT + cT − 2aT cosT ∠B.

c. Apply the definition of taxi-cosine to obtain cosT ∠ACB =
dE(A,C) · dE(B,C)

dT (A,C) · dT (B,C)
cos∠ACB. By the Law

of Cosines applied to 4ABC, cos∠C =
(dE(B,C))2 + (dE(A,C))2 − (dE(A,B))2

2 · dE(A,C) · dE(B,C)
. Hence

cosT ∠ACB =
dE(A,C) · dE(B,C)

dT (A,C) · dT (B,C)
· (dE(B,C))2 + (dE(A,C))2 − (dE(A,B))2

2 · dE(A,C) · dE(B,C)

=
(dE(B,C))2 + (dE(A,C))2 − (dE(A,B))2

2 · dT (A,C) · dT (B,C)
.

Use the Pythagorean Theorem in 4AC ′C and 4BC ′C to obtain

cosT ∠ACB =
(dE(B,C ′))2 + (dE(C,C ′))2 + (dE(A,C ′))2 + (dE(C,C ′))2 − (dE(A,C ′) + dE(B,C ′))2

2 · dT (A,C) · dT (B,C)
.

By algebra, this equation is equivalent to cosT ∠ACB =
h2T − pT (cT − pT )

aT · bT
, where pT = dT (A,C ′).

Now, obtain expressions for hT , pT and cT − pT by algebraic manipulation of previously-found equations

14



relating lengths of sides.
First, find an expression for pT . Note that dT (A,C) = bT = aT + cT − 2aT cosT ∠B, which implies

bT = aT + cT − 2aT

(
dE(B,C) · (cT − pT )

aT · (cT − pT )
· cT − pT
dE(B,C)

)
. After cancellation, bT = aT + cT − 2(cT − pT )→

bT = aT − cT + 2pT → pT =
bT + cT − aT

2
.

A similar manipulation to the equation bT = aT + cT − 2(cT − pT ) yields cT − pT =
aT + cT − bT

2
.

Now, notice that hT = aT − (cT − pT ) = aT −
aT + cT − bT

2
, which simplifies to

2aT
2
− aT + cT − bT

2
=

aT − cT + bT
2

, as needed. Substitution yields

cosT ∠ACB =

(
bT + cT − aT

2

)2

−
(
bT + cT − aT

2

)(
aT + cT − bT

2

)
aT · bT

,

which simplifies to cosT ∠ACB =
a2T + b2T − cT (aT + bT )

2 · aT · bT
.

This equation can be algebraically manipulated to obtain the desired result.

Alternate solution: To simplify the computations, introduce notation for various Euclidean lengths. Let

a = dE(B,C), b = dE(A,C), c = dE(A,B) = cT ;

p = dE(A,C ′) = dT (A,C ′) = b cosA;

q = dE(B,C ′) = dT (B,C ′) = a cosB.

Then
aT = q + hT , bT = p+ hT , cT = p+ q.

a. From the definition of the taxi-cosine, bT cosT A = bT · b·c
bT ·cT cosA = b cosA = p. Therefore bT + cT −

2bT cosT A = (p+ hT ) + (p+ q)− 2p = q + hT = aT .

b. Similarly, aT cosT B = q, so aT + cT − 2aT cosT B = (q + hT ) + (p+ q)− 2q = bT .

c. The Euclidean radian measures of the angles add up to π, so cosC = cos(π − A− B) = − cos(A+ B) =
sinA sinB − cosA cosB. Substitute into the definition of the taxi-cosine and multiply by aT bT :

aT bT cosT C = aT bT
ab

aT bT
(sinA sinB − cosA cosB)

= (b sinA)(a sinB)− (b cosA)(a cosB)

= h2T − pq
= h2T − (bT − hT )(aT − hT )

= (aT + bT )hT − aT bT .

Therefore a2T + b2T − 2aT bT cosT C = a2T + b2T − 2(aT + bT )hT + 2aT bT = (aT + bT )(aT + bT − 2hT ) =
(aT + bT )cT . Solving for cT gives the desired result.

10. In general, the area of a triangle ABC is equal to half of the area of the parallelogram determined by any two

sides of triangle ABC. The definition of taxi-sine, namely that sinT ∠AOB =
dE(O,A) · dE(O,B)

dT (O,A) · dT (O,B)
sin∠AOB,

implies that dT (O,A) ·dT (O,B) · sinT ∠AOB = dE(O,A) ·dE(O,B) · sin∠AOB. The latter expression is equal

to |
−⇀
OA ×

−−⇀
OB|T . Thus the cross-product of two vectors can be interpreted in a taxicab space as it is in a
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Euclidean space!
Now, express the area of the triangle ABC in three different ways:

[ABC] =
|
−−⇀
AB ×

−⇀
AC|T

2
=
|
−−⇀
AB ×

−−⇀
BC|T

2
=
|
−⇀
AC ×

−−⇀
BC|T

2
.

Notice also that |
−−⇀
AB×

−⇀
AC|T = cT ·bT ·sinT A and |

−−⇀
AB×

−−⇀
BC|T = cT ·aT ·sinT B and |

−⇀
AC×

−−⇀
BC|T = bT ·aT ·sinT C.

By substitution and multiplication by 2, cT · bT · sinT A = cT · aT · sinT B = bT · aT · sinT C. Dividing by the
nonzero quantity aT bT cT and taking reciprocals leads to the desired result.

Alternate solution: As in the solution to problem 9, let a, b, and c denote the Euclidean lengths of the
sides. With this notation, the definition of the taxi-sine gives

sinT C =
ab

aT bT
sinC =

ab sinC

aT bT
, thus

cT
sinT C

=
aT bT cT
abc

c

sinC
.

Hence the Taxicab Law of Sines follows from the Euclidean version, multiplying by
aT bT cT
abc

.

Note: Taxicab geometry is an active area of mathematical research, so many important questions remain unanswered.
Students who are interested in taxicab geometry might find the following sources helpful; both were inspirational in
the creation of this Power Question.

Eugene Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry, Dover, 1975.

Ayşe Bayar, Süheyla Ekmekçi and Münevver Özcan, On Trigonometric Functions and Cosine and Sine
Rules in Taxicab Plane, International Electronic Journal of Geometry, 2 (2009), 17-24. Retrieved from
http://www.iejgeo.com/matder/dosyalar/makale-11/paper2(bayar-ekmekci-ozcan).pdf.

16



6 Individual Problems

Problem 1. Given that a, b, and c are positive integers such that ab · bc is a multiple of 2016, compute the least
possible value of a+ b+ c.

Problem 2. Triangle ABC is isosceles. An ant begins at A, walks exactly halfway along the perimeter of 4ABC,
and then returns directly to A, cutting through the interior of the triangle. The ant’s path surrounds exactly
90% of the area of 4ABC. Compute the maximum possible value of tanA.

Problem 3. Compute
b 4
√

1c · b 4
√

3c · b 4
√

5c · · · b 4
√

2015c
b 4
√

2c · b 4
√

4c · b 4
√

6c · · · b 4
√

2016c
.

Problem 4. Compute the number of permutations x1, . . . , x6 of the integers 1, . . . , 6 such that xi+1 ≤ 2xi for all i,
1 ≤ i < 6.

Problem 5. Compute the least possible non-zero value of A2 + B2 + C2 such that A, B, and C are integers
satisfying A log 16 +B log 18 + C log 24 = 0.

Problem 6. In 4LEO, point J lies on LO such that JE ⊥ EO, and point S lies on LE such that JS ⊥ LE.
Given that JS = 9, EO = 20, and JO + SE = 37, compute the perimeter of 4LEO.

Problem 7. Compute the least possible area of a non-degenerate right triangle with sides of length sinx, cosx,
and tanx, where x is a real number.

Problem 8. Let P (x) be the polynomial x3+Ax2+Bx+C for some constants A,B, and C. There exist constants
D and E such that for all x, P (x+ 1) = x3 +Dx2 + 54x+ 37 and P (x+ 2) = x3 + 26x2 +Ex+ 115. Compute
the ordered triple (A,B,C).

Problem 9. An n-sided die has the integers between 1 and n (inclusive) on its faces. All values on the faces of
the die are equally likely to be rolled. An 8-sided die, a 12-sided die, and a 20-sided die are rolled. Compute
the probability that one of the values rolled is equal to the sum of the other two values rolled.

Problem 10. Compute the largest of the three prime divisors of 134 + 165 − 1722.
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7 Answers to Individual Problems

Answer 1. 14

Answer 2. 3
√

11

Answer 3. 5
16

Answer 4. 144

Answer 5. 105

Answer 6. 120

Answer 7.
4√2
2 −

4√8
4

Answer 8. (20, 11, 5)

Answer 9. 23
240

Answer 10. 1321
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8 Solutions to Individual Problems

Problem 1. Given that a, b, and c are positive integers such that ab · bc is a multiple of 2016, compute the least
possible value of a+ b+ c.

Solution 1. Factoring yields 2016 = 25 · 32 · 7, which means that 2 · 3 · 7 = 42 | ab. To minimize a + b, first look
for cases where ab = 42. If a = 2, then b = 21, so setting c = 2 is sufficient, yielding 25 for the sum. If a = 3,
then b = 14, but c must be 5 (or greater) to satisfy the condition that 25 | abbc, yielding a + b + c = 22. If
a = 6 and b = 7, then c = 1 is sufficient, yielding a + b + c = 14. This value is minimal because a = 7 forces
b = 6 and c ≥ 5, while the next larger value of a is 14. Thus the minimal value of a+ b+ c is 14.

Problem 2. Triangle ABC is isosceles. An ant begins at A, walks exactly halfway along the perimeter of 4ABC,
and then returns directly to A, cutting through the interior of the triangle. The ant’s path surrounds exactly
90% of the area of 4ABC. Compute the maximum possible value of tanA.

Solution 2. Point A cannot be the vertex of the isosceles triangle, because if it were, the ant would reach the
midpoint of the base, and then the area surrounded by the ant’s path would be half the triangle’s area rather
than 90%. So A is one of the two base angles. Let P be the point reached by the ant and, without loss of
generality, let m∠B be the triangle’s vertex angle. Note that by the triangle inequality, P lies on BC. There
are two cases to consider: either the ant passes through vertex B first, making [APB] greater than [APC], or
the ant passes through vertex C first, making [APC] greater than [APB]. In the first case, because 4APB
and 4APC have collinear bases (along BC) and the same altitude (from point A), [APB]

[APC] = PB
PC . Because

[APB]
[APC] = 90%

10% = 9, PB
PC = 9. Without loss of generality, set PB = 9 and PC = 1. Then AB = 10, and from

AB + PB = 1
2 (AB +BC + AC), obtain AC = 18. By the Pythagorean Theorem, the altitude to AC is

√
19,

and tanA =
√
19
9 ≈ 0.5. In the second case, analogous reasoning yields PB = 1, PC = 9, and AC = 2, so that

tanA =
√
99
1 > 0.5. Thus the answer is 3

√
11.

Problem 3. Compute
b 4
√

1c · b 4
√

3c · b 4
√

5c · · · b 4
√

2015c
b 4
√

2c · b 4
√

4c · b 4
√

6c · · · b 4
√

2016c
.

Solution 3. Notice that b 4
√
n− 1c = b 4

√
nc except when n is a perfect fourth power. So all of the factors in the

product can be ignored except for b
4√15c
b 4√16c ,

b 4√255c
b 4√256c ,

b 4√1295c
b 4√1296c . These fractions simplify to 1

2 , 3
4 , and 5

6 , respectively,

and their product is 1
2 ·

3
4 ·

5
6 , or 5

16
.

Problem 4. Compute the number of permutations x1, . . . , x6 of the integers 1, . . . , 6 such that xi+1 ≤ 2xi for all i,
1 ≤ i < 6.

Solution 4. First notice that some pairs are impossible: 1 can only be followed by 2, and 2 can only be followed
by 1, 3, or 4. These observations suggest that the problem can be divided into several cases:

Case 1: x6 = 1. If x5 = 2, then there are 4! arrangements of the other numbers. If x5 6= 2, then holding either 23
or 24 as a consecutive pair yields 4! permutations. So there are 3 · 24 = 72 possible arrangements.

Case 2: x5 = 1 and x6 = 2. Then there are 4! = 24 arrangements of the other numbers.

Case 3: Either 123 or 124 occur in that order. Then there are 4! permutations of each cluster and the other three
numbers, yielding 2 · 4! = 48 possible arrangements.

Hence the desired number of permutations of the numbers is 144.
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Problem 5. Compute the least possible non-zero value of A2 + B2 + C2 such that A, B, and C are integers
satisfying A log 16 +B log 18 + C log 24 = 0.

Solution 5. Use the laws of logarithms to obtain (4 log 2)A+ (log 2 + 2 log 3)B+ (3 log 2 + log 3)C = 0. Collecting
terms with common logarithm coefficients yields (4A + B + 3C) log 2 + (2B + C) log 3 = 0. Because 3 is not
a rational power of 2, in order to satisfy this equation with integral A,B,C, both 4A + B + 3C = 0 and
2B + C = 0. The second equation is equivalent to C = −2B, yielding 4A+B − 6B = 0 or 4A = 5B. Thus A
is divisible by 5 and B is divisible by 4. Set A = 5, B = 4, and C = −8 to obtain 52 + 42 + (−8)2 = 105.

Problem 6. In 4LEO, point J lies on LO such that JE ⊥ EO, and point S lies on LE such that JS ⊥ LE.
Given that JS = 9, EO = 20, and JO + SE = 37, compute the perimeter of 4LEO.

Solution 6. Optimistically, one might hope that SE = 12 and JO = 25, and in fact this turns out to be the case!
Let JO = x and SE = y. Then JE2 = 92 + y2 = 81 + y2 and JE2 + 202 = x2, hence y2 + 481 = x2. Thus
x2−y2 = 481. Because x+y = 37, x−y = 481/37 = 13. Hence 2x = 50, x = 25, and y = 12. That information
by itself does not solve the problem, but the fact that the sides of right triangles JES and JOE are known
makes a combination of angle-chasing and trigonometry feasible.

Let m∠JOE = θ. Then m∠JES = θ because triangles JSE and JEO are both 3−4−5 right triangles. Then
m∠L = 180◦−(m∠LEO+m∠LOE) = 180◦−(90◦+θ+θ) = 90◦−2θ. Hence tanL = 1

tan 2θ and sinL = cos 2θ.

Using double-angle identities for tangent and sine yields tanL = 1−tan2 θ
2 tan θ and sinL = cos2 θ − sin2 θ. In this

case, sin θ = 3
5 , cos θ = 4

5 , and tan θ = 3
4 . Substitute these values into the preceding equations to obtain

tanL = 7/16
6/4 = 7

24 , while sinL = 7
25 . Then LS = 9

tanL = 216
7 and LJ = 9

sinL = 225
7 . Thus LS+LJ = 441

7 = 63.

With SE = 12, EO = 20, JO = 25, the perimeter is 120.

Alternate Solution: Let t = SE. Then JE2 = t2 +92 = (37− t)2−202, which implies that t = 12. Note that
4JEO ∼ 4JSE. Let α = m∠EOJ ; then m∠JES = α and m∠LJS = 2α. Thus sin 2α = 2(sinα)(cosα) = 24

25 ,

and 4LJS is similar to a 7–24–25 triangle. Letting x = JS
9 , it follows that LJ +LS = 25x+ 24x = 49x = 63.

Thus the perimeter of 4LEO is 63 + 37 + 20 = 120.

Problem 7. Compute the least possible area of a non-degenerate right triangle with sides of length sinx, cosx,
and tanx, where x is a real number.

Solution 7. Let 4ABC be a right triangle with hypotenuse BC and side lengths sinx, cosx, and tanx. There are
three cases to consider, depending on the length chosen for BC. If BC = tanx, then tan2 x = sin2 x+ cos2 x =
1 ⇒ tanx = 1 ⇒ x = 45◦. In this case, ABC would be an isosceles right triangle with legs of length

sin 45◦ =
√
2
2 , so [ABC] would be AB·AC

2 = 1
4 .

Because sinx, cosx, and tanx must all be positive,

tanx =
sinx

cosx
≥ sinx

1
= sinx.

Thus it cannot be the case that BC = sinx, because the hypotenuse is the longest side of the triangle.

Finally, if BC = cosx, then [ABC] = AB·AC
2 = sin2 x

2 cos x and cos2 x = sin2 x+ tan2 x. The latter equation can be
rewritten as

cos4 x = (sin2 x)(cos2)x+ sin2 x

cos4 x = (1− cos2 x) cos2 x+ (1− cos2 x)

2 cos4 x = 1,
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and so cosx = 1
4√2

=
4√8
2 , sin2 x = 1−

√
2
2 . Thus

[ABC] =
4
√

2

2
−

4
√

8

4
=

1

4

(
2

4
√

2− 4
√

8
)
.

The last step is to compare the value above with 1
4 . To see that the value above is less than 1

4 , observe that

4 4
√

2 < 5 because (4 4
√

2)4 = 512 < 625 = 54. Next, observe that 2 4
√

8 > 3 because (2 4
√

8)4 = 27 = 128 > 81 =
34. Put these facts together to see that

1

4

(
2

4
√

2− 4
√

8
)

=
1

8

(
4

4
√

2− 2
4
√

8
)
<

1

8
(5− 3) =

1

4
.

Thus the answer is
4√
2

2
−

4√
8

4
.

Problem 8. Let P (x) be the polynomial x3+Ax2+Bx+C for some constants A,B, and C. There exist constants
D and E such that for all x, P (x+ 1) = x3 +Dx2 + 54x+ 37 and P (x+ 2) = x3 + 26x2 +Ex+ 115. Compute
the ordered triple (A,B,C).

Solution 8. Plug x = 0 into the given equation involving P (x+ 2) to obtain P (2) = 115. Next, plug in x = 1 into
the given equation involving P (x+ 1) to obtain P (2) = 1 +D + 54 + 37. Thus D = 115− (1 + 54 + 37) = 23.
Then P (x) = P ((x− 1) + 1) = (x− 1)3 + 23(x− 1)2 + 54(x− 1) + 37 = x3 + 20x2 + 11x+ 5, hence (A,B,C) =
(20, 11, 5). It can be verified that E = 103.

Problem 9. An n-sided die has the integers between 1 and n (inclusive) on its faces. All values on the faces of
the die are equally likely to be rolled. An 8-sided die, a 12-sided die, and a 20-sided die are rolled. Compute
the probability that one of the values rolled is equal to the sum of the other two values rolled.

Solution 9. Let a, b, and c be the values rolled on the 8-, 12-, and 20-sided dice, respectively. Call a triple (a, b, c)
of rolls great if one roll equals the sum of the other two.

Imagine that the first two dice are rolled (so that a and b are determined), and then the 20-sided die is
rolled. Then the triple (a, b, c) is great if either c = a + b, c = a − b, or c = b − a. The first case is possible
for any pair of rolls (a, b), and the probability is 1

20 for each such pair. The second and third cases are only
possible if a > b or if b > a, respectively, but again, in each of these cases, the probability of obtaining the
proper value of c is 1

20 . So the total probability of rolling a great triple satisfying either c = a− b or c = b− a
is simply 1

20 · P (a > b or b > a). But P (a > b or b > a) = 1− P (a = b) = 1− 8
96 = 1− 1

12 = 11
12 . (This value is

simply the probability that whatever number was rolled on the 8-sided die also comes up on the 12-sided die.)
So the total probability of rolling a great triple is 1

20 + 11
240 = 23

240 .

Problem 10. Compute the largest of the three prime divisors of 134 + 165 − 1722.

Solution 10. Let N = 134 + 165 − 1722. Notice that 165 = (24)5 = 220 and 134 − 1722 = 1692 − 1722 =
(169− 172)(169 + 172) = −3 · 341 = −1023 = 1− 210. Thus N = 220 − 210 + 1. Multiply by 1025 = 210 + 1 to
obtain

1025 ·N = (220 − 210 + 1)(210 + 1)

= 230 + 1.
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The right-hand side can be refactored via the identity 4u4 + 1 = (2u2 + 2u+ 1)(2u2 − 2u+ 1), using u = 27:

1025 ·N = (2 · 214 + 2 · 27 + 1)(2 · 214 − 2 · 27 + 1)

52 · 41 ·N = (32768 + 256 + 1)(32768− 256 + 1)

= 33025 · 32513

= (25 · 1321)(41 · 793)

N = 1321 · 793.

Searching for small prime divisors leads to 793 = 13 · 61, so 1321 is the largest prime factor of N .
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9 Relay Problems

Relay 1-1 Compute the number of lattice points on the graph of y = (x− 153)(153−x
2).

Relay 1-2 Let T = TNYWR. Let r and s be the zeros of x2 − 4Tx+ T 2. Compute
√
r +
√
s.

Relay 1-3 Let T = TNYWR. Among all triples of integers (a, b, c) satisfying 2a + 4b = 8c, compute the least value
of a+ b+ c greater than T 2.

Relay 2-1 Compute the number of ways to assign the integers {1, 2, . . . , 7} to each of the
hexagons in the figure to the right such that every pair of numbers in edge-
adjacent hexagons is relatively prime.

Relay 2-2 Let T = TNYWR. In right triangle ABC with hypotenuse BC, AB = T and BC = 2T√
3
. A circle passes

through A and is tangent to BC at its midpoint. Compute the radius of the circle.

Relay 2-3 Let T = TNYWR. Compute the number of ways to make $T from an unlimited supply of $10 bills, $5
bills, and $1 bills.
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10 Relay Answers

Answer 1-1 27

Answer 1-2 9
√

2

Answer 1-3 169

Answer 2-1 72

Answer 2-2 24

Answer 2-3 9
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11 Relay Solutions

Relay 1-1 Compute the number of lattice points on the graph of y = (x− 153)(153−x
2).

Solution 1-1 For an integer x, (x−153)(153−x
2) will be an integer if and only if one of the following three conditions

is satisfied:

(1) 153− x2 ≥ 0,

(2) x− 153 = −1 or 1,

(3) x− 153 = 0 and 153− x2 > 0.

For the first case, there are 25 solutions for −12 ≤ x ≤ 12. For the second case, there are two solutions
(x = 152 or 154). There are no solutions for the third case, as 153 − 1532 < 0. Hence there are 27 lattice
points on the graph.

Relay 1-2 Let T = TNYWR. Let r and s be the zeros of x2 − 4Tx+ T 2. Compute
√
r +
√
s.

Solution 1-2 Let u =
√
r +
√
s. Then u2 = r + s+ 2

√
rs. The sum of the zeros of x2 − 4Tx+ T 2 is 4T and their

product is T 2. Thus u2 = 4T + 2|T |. With T = 27, u2 = 6× 27, so u = 9
√
2.

Relay 1-3 Let T = TNYWR. Among all triples of integers (a, b, c) satisfying 2a + 4b = 8c, compute the least value
of a+ b+ c greater than T 2.

Solution 1-3 Rewrite the equation with common bases to obtain 2a + 22b = 23c. The only case in which the sum
of two integer powers of 2 equals a third integer power of 2 occurs when the summands have equal exponents,
so a = 2b, 3c = a+ 1, and a+ b+ c = a+ a

2 + a+1
3 = 11a+2

6 . For all three values to be integers, a must be an

even number of the form 3k − 1. As T = 9
√

2, T 2 = 162 and 11a+2
6 ≥ 162 ⇒ 11a + 2 ≥ 972 ⇒ a ≥ 970

11 > 88.
The least even integer value a of the form 3k − 1 greater than 88 is 92, and the sum is 92 + 46 + 31 = 169.

Relay 2-1 Compute the number of ways to assign the integers {1, 2, . . . , 7} to each of the
hexagons in the figure to the right such that every pair of numbers in edge-
adjacent hexagons is relatively prime.

Solution 2-1 No two even numbers can be adjacent, so the three even numbers must be in alternating hexagons on
the boundary. There are two ways to select alternating hexagons on the boundary, and six ways to assign the
even numbers to the three hexagons. The number 3 cannot be adjacent to 6, hence the 3 must be opposite the
6. Then the remaining odd numbers can be assigned in any way in the remaining three hexagons. Hence the
total number of arrangements is 2× 6× 6 = 72.

Relay 2-2 Let T = TNYWR. In right triangle ABC with hypotenuse BC, AB = T and BC = 2T√
3
. A circle passes

through A and is tangent to BC at its midpoint. Compute the radius of the circle.
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Solution 2-2 Note that 4ABC is a 30-60-90 right triangle, so AC = T√
3
. Let point C ′ be obtained by reflecting

point C about AB so that 4CBC ′ is equilateral. Note that the circle which passes through A and which is
tangent to BC at its midpoint happens to be the incircle of 4CBC ′! The radius of the incircle is one-third
the altitude of 4CBC ′, so the radius is T

3 . As T = 72, the radius is 24.

Relay 2-3 Let T = TNYWR. Compute the number of ways to make $T from an unlimited supply of $10 bills, $5
bills, and $1 bills.

Solution 2-3 Let T = 10t + 5f + n, where t, f , and n are non-negative integers representing the number of tens,
fives, and ones, respectively. Then 2t+f ≤ bT5 c, with the remaining total consisting of $1 bills. The number of
ways to make $T is equal to the number of lattice points (t, f) contained in the triangle bounded by the lines
t = 0, f = 0, and 2t + f = bT5 c. When t = 0, there are bT5 c + 1 possible values of f . Incrementing t by one

reduces by two the number of values of f for which there is a solution. As T = 24, bT5 c+ 1 = 5, and there are
5 + 3 + 1 = 9 solutions: (t, f, n) = (0, 0, 24), (0, 1, 19), (0, 2, 14), (0, 3, 9), (0, 4, 4), (1, 0, 14), (1, 1, 9), (1, 2, 4), and
(2, 0, 4).
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12 Super Relay

1. Given that a, b, and c are positive integers with ab = 20 and bc = 16, compute the positive difference between
the maximum and minimum possible values of a+ b+ c.

2. Let T = TNYWR. Mary circles a number in one of the first six rows of Pascal’s

Triangle, shown at right. Jim then circles another number — possibly having the

same value as Mary’s number — but Jim’s circle cannot coincide with Mary’s circle.

For example, if Mary circles the top “1”, then Jim can circle any number other than

the top “1”. The product of the two circled numbers is then computed. Compute the

number of possible distinct products that are greater than T .

3. Let T = TNYWR. The diagram at right shows part of a 2×T checkerboard
pattern. A 1× 3 tile is randomly placed on the board so that it completely
covers three unit squares. Compute the probability that two of the covered
squares are black.

4. Let T = TNYWR. Leo rides his bike at 16T miles per hour and Carla and Rita both ride their bikes at 12
miles per hour. Leo and Carla start at the points (0, 0) and (60, 0), respectively, and they begin biking towards
each other (along the x-axis), where the units of both coordinate axes are in miles. At the same time, Rita
starts biking from the point (a, b), where a > 0, and she is riding along the line x = a, towards the x-axis.
Compute the value of a such that Leo, Carla, and Rita will meet at the same moment.

5. Let T = TNYWR. In rectangle ARML, diagrammed at right (not drawn to scale),

N is the midpoint of AR, NL = 40, and AN = T . Arc L̂PM is an arc of a circle

centered at N , P is the midpoint of arc L̂PM , and arc L̂P ′M is the reflection of

L̂PM across LM . Given that P ′ is the midpoint of arc L̂P ′M , compute NP ′.

6. Let T = TNYWR. Let p and q be distinct primes and for each positive integer n, let d(n) be the number

of positive divisors of n. Compute the least possible positive integer k such that the quotient
d(pT+2qk)

d(pT+1q2)
is an

integer.

7. Let T = TNYWR. An ARML team of 15 students contains k boys and 15 − k girls. The value of k satisfies
the equation

(
T+1
3

)
= 325k. Compute the probability that a randomly chosen student from the team is a boy.

15. A dartboard is made up of two concentric circles that have radii 20 and 16. A dart is thrown at random and
hits the board. Compute the probability that the dart lands in the circle of radius 16.

14. Let T = TNYWR. Let A = 2K , R = A20,M = R16, and L = MT . Given that K and L are positive integers,
compute the least possible value of A.

13. Let T = TNYWR. Compute 2logT 8 − 8logT 2.

12. Let T = TNYWR. Compute the value of k such that the following system of equations has a solution.

x+ y = T
20x+ 16y = 8
kx+ 20y = 16.

11. Let T = TNYWR. John has T distinct baseball cards and Benson has 2T distinct baseball cards, which include
the same T cards that John has. John randomly chooses two cards from Benson’s deck. The probability that

exactly one of the chosen cards is not in John’s deck can be expressed in the form
T

K
. Compute K.
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10. Let T = TNYWR. In circle O, perpendicular chords AR and ML intersect at N . Given that AN = T ,
RN = 5, and MN = 25, compute the area of circle O.

9. Let T = TNYWR, and let K =
⌊
T
π

⌋
. Consider the sequence defined by a1 = 20, a2 = 16, and for n ≥ 3, an is

the units digit of an−1 + an−2. Compute
aK

10
.

8. Let t be the number you will receive from position 7 and let s be the number you will receive from position 9.
In 4ABC, point H lies on BC such that AH ⊥ BC. Given that the sides of 4ABC are integers, tan∠B = t,
and sin∠CAH = s, compute the least possible perimeter of 4ABC.
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13 Super Relay Answers

1. 24

2. 6

3. 1
2

4. 24

5. 24

6. 25

7. 8
15

15. 16
25

14. 32

13. 0

12. 28

11. 55

10. 949π

9. 3
5

8. 48
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14 Super Relay Solutions

Problem 1. Given that a, b, and c are positive integers with ab = 20 and bc = 16, compute the positive difference
between the maximum and minimum possible values of a+ b+ c.

Solution 1. Note that 5 must divide a, hence a must be either 5, 10, or 20. Thus the possible solutions (a, b, c)
are (5, 4, 4), (10, 2, 8), and (20, 1, 16). The first of these gives the minimum possible sum a+ b+ c of 13 while
the last of these gives the maximum possible sum a+ b+ c of 37. Thus the answer is 37− 13 = 24.

Problem 2. Let T = TNYWR. Mary circles a number in one of the first six rows of Pascal’s

Triangle, shown at right. Jim then circles another number — possibly having the

same value as Mary’s number — but Jim’s circle cannot coincide with Mary’s circle.

For example, if Mary circles the top “1”, then Jim can circle any number other than

the top “1”. The product of the two circled numbers is then computed. Compute the

number of possible distinct products that are greater than T .

Solution 2. Before receiving a value of T , it makes sense to list out all the possible products. There are 6 products
that are greater than T (= 24): 25 (5× 5), 30 (5× 6 = 3× 10), 40 (4× 10), 50 (5× 10), 60 (6× 10), and 100
(10× 10).

Problem 3. Let T = TNYWR. The diagram at right shows part of a 2×T checkerboard
pattern. A 1× 3 tile is randomly placed on the board so that it completely
covers three unit squares. Compute the probability that two of the covered
squares are black.

Solution 3. Note that for any possible position of the 1× 3 tile’s left boundary, there are exactly two placements
of the tile (in the first row or in the second row). Exactly one of these placements will cover two white squares
and one black square, and the other will cover two black squares and one white square. Because these options
are equally likely, the probability that the 1× 3 tile covers two black squares is therefore 1

2 (independent of the
value of T ).

Problem 4. Let T = TNYWR. Leo rides his bike at 16T miles per hour and Carla and Rita both ride their bikes
at 12 miles per hour. Leo and Carla start at the points (0, 0) and (60, 0), respectively, and they begin biking
towards each other (along the x-axis), where the units of both coordinate axes are in miles. At the same time,
Rita starts biking from the point (a, b), where a > 0, and she is riding along the line x = a, towards the x-axis.
Compute the value of a such that Leo, Carla, and Rita will meet at the same moment.

Solution 4. First note that because Carla and Rita ride at the same speed, Carla should ride a distance of b (i.e.,
Rita’s initial y-coordinate) and Leo should ride a distance of a = 60− b in order for them to meet at the same
time. If k is the ratio of Leo’s speed to Carla’s and Rita’s speed, then 60−b

b = a
60−a = r, hence a = 60r

1+r = 240T
3+4T .

With T = 1
2 , it follows that a = 24.

Problem 5. Let T = TNYWR. In rectangle ARML, diagrammed at right (not drawn to scale),

N is the midpoint of AR, NL = 40, and AN = T . Arc L̂PM is an arc of a circle

centered at N , P is the midpoint of arc L̂PM , and arc L̂P ′M is the reflection of

L̂PM across LM . Given that P ′ is the midpoint of arc L̂P ′M , compute NP ′.
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Solution 5. Let NP intersect LM at Q. Because NP = NL = 40, it follows that PQ = 40 − AL. Because
P ′Q = PQ, it follows that NP ′ = AL − (40 − AL) = 2 · AL − 40. With T = 24, it follows that 4NAL is
similar to a 3−4−5 triangle, hence AL = 32, and NP ′ = 24.

Problem 6. Let T = TNYWR. Let p and q be distinct primes and for each positive integer n, let d(n) be the

number of positive divisors of n. Compute the least possible positive integer k such that the quotient
d(pT+2qk)

d(pT+1q2)
is an integer.

Solution 6. Note that d(pT+2qk) = (T + 3)(k+ 1) because a positive divisor of pT+2qk is of the form pxqy, where
x and y are integers satisfying 0 ≤ x ≤ T + 2 and 0 ≤ y ≤ k. Similarly, d(pT+1q2) = 3(T + 2). Thus the

quotient is
(T + 3)(k + 1)

3(T + 2)
. Note that T + 3 and T + 2 are relatively prime, so either k = T + 1 if 3 divides T + 3

or k = 3T + 5 if 3 does not divide T + 3. With T = 24, the former case applies, thus k = 25.

Problem 7. Let T = TNYWR. An ARML team of 15 students contains k boys and 15− k girls. The value of k
satisfies the equation

(
T+1
3

)
= 325k. Compute the probability that a randomly chosen student from the team

is a boy.

Solution 7. With T = 25,
(
26
3

)
= 26·25·24

3! = 2600. Thus k = 2600/325 = 8, and the desired probability is 8
15 .

Problem 15. A dartboard is made up of two concentric circles that have radii 20 and 16. A dart is thrown at
random and hits the board. Compute the probability that the dart lands in the circle of radius 16.

Solution 15. The inner circle has radius 16 and therefore has area π · 162. The outer circle has radius 20 and
therefore has area π · 202. The probability that a dart lands in the inner circle is the ratio of these areas, so

the desired probability is π·162
π·202 =

(
16
20

)2
=
(
4
5

)2
= 16

25 .

Problem 14. Let T = TNYWR. Let A = 2K , R = A20,M = R16, and L = MT . Given that K and L are
positive integers, compute the least possible value of A.

Solution 14. Note that R = (AK)20 = A20K , M = R16 = A320K , and L = MT = A320KT . If T is a positive
integer, then K = 1 suffices. On the other hand, if T is a rational number (say c

d in lowest terms), but not a

positive integer, then K = d
gcd(320,d) . With T = 16

25 , K = 25
gcd(320,25) = 5. Thus A = 25 = 32.

Problem 13. Let T = TNYWR. Compute 2logT 8 − 8logT 2.

Solution 13. Note that 2logT 8 = 2logT 23 = 23 logT 2 = 8logT 2. Thus, so long as T is positive and T 6= 1 (to ensure
that the function logT is defined), the expression 2logT 8 − 8logT 2 equals 0. Because T = 32 satisfies these
constraints, the answer is 0.

Problem 12. Let T = TNYWR. Compute the value of k such that the following system of equations has a
solution.

x+ y = T
20x+ 16y = 8
kx+ 20y = 16.
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Solution 12. Subtract sixteen times the first equation from the second equation to obtain 4x = 8 − 16T . Thus
x = 2 − 4T . Plug this into the first equation to get y = T − x = 5T − 2. Plug in these values for x and y

into the third equation to obtain k(2 − 4T ) + 20(5T − 2) = 16 → k =
28 − 50T

1 − 2T
. With T = 0, it follows that

k = 28
1 = 28.

Problem 11. Let T = TNYWR. John has T distinct baseball cards and Benson has 2T distinct baseball cards,
which include the same T cards that John has. John randomly chooses two cards from Benson’s deck. The

probability that exactly one of the chosen cards is not in John’s deck can be expressed in the form
T

K
. Compute

K.

Solution 11. There are
(
2T
2

)
= T (2T − 1) possible selections of two cards that John can choose from Benson’s

deck. Of those, there will be T 2 pairs of cards, exactly one of which is not in John’s deck. Hence the desired

probability is T 2

T (2T−1) = T
2T−1 , hence K = 2T − 1. With T = 28, K = 55.

Problem 10. Let T = TNYWR. In circle O, perpendicular chords AR and ML intersect at N . Given that
AN = T , RN = 5, and MN = 25, compute the area of circle O.

Solution 10. Note that by Power of a Point, LN = AN ·RN
MN = T

5 . With T = 55, LN = 11. Let P be the foot

of the perpendicular from O to AR and let Q be the foot of the perpendicular from O to ML. Note that
AP = 1

2 (55 + 5) = 30 and MQ = 1
2 (25 + 11) = 18. Because chords AR and ML are perpendicular, it follows

that OP = QN = MN −MQ = 7 and that OQ = PN = PR−NR = 30− 5 = 25. Letting r be the radius of
circle O, it follows that r2 = 302 + 72 = 182 + 252 = 949, hence the answer is 949π.

Problem 9. Let T = TNYWR, and let K =
⌊
T
π

⌋
. Consider the sequence defined by a1 = 20, a2 = 16, and for

n ≥ 3, an is the units digit of an−1 + an−2. Compute
aK

10
.

Solution 9. Ignoring the tens digits of the first two terms, the sequence is

0, 6, 6, 2, 8, 0, 8, 8, 6, 4, 0, 4, 4, 8, 2, 0, 2, 2, 4, 6, 0, 6, 6, 2, . . . .

Note that this sequence is periodic with period 20. Thus when m is an integer, a20m = 6. With T = 949π,
K = 949, and a940 = 6. Counting 9 terms into the next block of 20 terms, conclude that a949 = 6, hence the
desired ratio is 3

5 .

Problem 8. Let t be the number you will receive from position 7 and let s be the number you will receive from
position 9. In 4ABC, point H lies on BC such that AH ⊥ BC. Given that the sides of 4ABC are integers,
tan∠B = t, and sin∠CAH = s, compute the least possible perimeter of 4ABC.

Solution 8. Let BH = x and AC = y. Then AH = tx and CH = sy. By the Pythagorean Theorem, AB =
x
√

1 + t2 and t2x2 + s2y2 = y2, hence AC = y = tx√
1−s2 . With t = 8

15 and s = 3
5 , note that triangles AHB

and CHA are similar to 8−15−17 and 3−4−5 triangles, respectively. Setting x = 15 gives AH = 8, AB = 17,
CH = 6, and AC = 10. Thus the minimum perimeter of 4ABC is 17 + 10 + (15 + 6) = 48.
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15 Tiebreaker Problems

Problem 1. Compute the least value of N such that there are exactly 43 ordered quadruples of positive integers
(a, b, c, d) satisfying N = a2 + b2 + c2 + d2.

Problem 2. Regular octagon HEPTAGON has legs of length 8. Segments ET and PA intersect at X. Compute
the area of heptagon HEXAGON .

Problem 3. Compute the base-10 value of 1112 + 2223 + 3334 + · · ·+ 8889.
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16 Tiebreaker Answers

Answer 1. 100

Answer 2. 112 + 112
√

2

Answer 3. 2016
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17 Tiebreaker Solutions

Problem 1. Compute the least value of N such that there are exactly 43 ordered quadruples of positive integers
(a, b, c, d) satisfying N = a2 + b2 + c2 + d2.

Solution 1. To understand how to count the number of ordered quadruples that satisfy the given equation, it is
useful to consider a particular value of N and a particular solution to the resulting equation. So, for example,
with N = 18, one solution is (1, 2, 2, 3). Because of the symmetry of the expression a2 + b2 + c2 + d2, any
permutation of (1, 2, 2, 3) is also a solution, so there are 4!

2! = 12 different quadruples corresponding to the same
values; call the set of all such quadruples a solution class. This observation suggests starting by identifying
different possible sizes of solution classes. Assuming that the initial values satisfy a ≤ b ≤ c ≤ d, the different
solution classes and their sizes are given in the following table.

Solution class Size
a < b < c < d 4! = 24
a = b < c < d
a < b = c < d
a < b < c = d

4!
2! = 12

a = b < c = d 4!
2!2! = 6

a = b = c < d
a < b = c = d

4!
3! = 4

a = b = c = d 1

The goal is then to identify the least value of N such that the sizes of the different solution classes sum
to 43. Note that 43 is odd, while all but one of the class sizes are even. So for some positive integer m,
N = m2 + m2 + m2 + m2 = 4m2 = (2m)2. Thus N is not only even, it is the square of an even number.
Furthermore, note that all other solution classes except the case a = b < c = d have sizes divisible by four.
Because 42 is not divisible by four, there must also be a solution of the form N = a2 +a2 + c2 + c2 = 2a2 + 2c2,
which implies that half of N is a sum of squares of distinct integers.

These two insights rule out several small cases, because for m = 1, 2, 3, 4, N/2 = 2, 8, 18, 32 respectively,
and none of these is the sum of two distinct squares. On the other hand, m = 5 yields N = 100, and
N/2 = 50 = 12 + 72, which is promising! In fact,

100 = 92 + 32 + 32 + 12

= 82 + 42 + 42 + 22

= 72 + 52 + 52 + 12,

yielding a total of 3 · 12 + 6 + 1 = 43 solutions. For N = 100, note that if the resulting equation had a solution
of the form a = b = c < d, then because 100 is not a multiple of 3, d cannot be a multiple of 3. Similarly, if a
solution of the form a < b = c = d existed, then a cannot be a multiple of 3. But because none of (100− 12)/3,
(100−22)/3, (100−42)/3, (100−72)/3, or (100−82)/3 is a perfect square, and because (100−52)/3 = 25 = 52,
corresponds to the case 100 = 52 + 52 + 52 + 52, which has already been accounted for, it follows that there are
no solutions of the form a = b = c < d or a < b = c = d.

Lastly, for N = 100, the equation has no solutions of the form a < b < c < d. To see this, note that a perfect
square is either congruent to 1 or 0 modulo 4, depending on its parity. Given that a2 + b2 + c2 + d2 = 100 ≡ 0
(mod 4), it follows that a, b, c and d must all have the same parity. If all are even, then the least possible value
of a2 + b2 + c2 +d2 with a < b < c < d would be 22 + 42 + 62 + 82 = 120 which is larger than 100. If all are odd,
then the least value is 12 + 32 + 52 + 72 = 84 6= 100. The second smallest value is 12 + 32 + 52 + 92 = 116. Thus
there are no solutions in the solution class a < b < c < d, and so the least value of N for which the equation
a2 + b2 + c2 + d2 = N has 43 solutions is 100.
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Problem 2. Regular octagon HEPTAGON has legs of length 8. Segments ET and PA intersect at X. Compute
the area of heptagon HEXAGON .

Solution 2. Dissect heptagon HEXAGON into hexagon HEAGON and 4AXE. First compute the area of
hexagon HEAGON . Extend HE and ON to meet at Q, and extend ON and AG to meet at R. Note that
4HNQ and 4GOR are isosceles right triangles each with hypotenuse of length 8. Thus each triangle has legs
of length 4

√
2 and therefore [HNQ] = [GOR] = 1

2 (4
√

2)2 = 16. Therefore

[HEAGON ] = [AEQR]− [HNQ]− [GOR]

= QR ·QE − 16− 16

= (QN +NO +OR)(QH +HE)− 32

= (8 + 8
√

2)(8 + 4
√

2)− 32

= 96 + 96
√

2.

Next, compute [AXE]. Draw in altitude XY from X to EA, so that

[AXE] = 1
2EA ·XY = (4 + 4

√
2) ·XY.

To complete this computation, determine XY as follows. Draw HA. Because HA ‖ ET and HE ‖ XY ,
triangles HEA and XY E are similar. Specifically, EY = 1

2EA, so XY = 1
2HE = 4. Thus

[AXE] = (4 + 4
√

2) · 4 = (16 + 16
√

2).

Finally, combine these computations to obtain

[HEXAGON ] = [HEAGON ] + [AXE]

= (96 + 96
√

2) + (16 + 16
√

2)

= 112 + 112
√
2.

Problem 3. Compute the base-10 value of 1112 + 2223 + 3334 + · · ·+ 8889.

Solution 3. Note that mmmm+1 = (m+ 1)3 − 1. So the desired sum S is

S = (23 − 1) + · · ·+ (93 − 1)

= (23 + · · ·+ 93)− 8

= (13 + 23 + · · ·+ 93)− 8− 13.

Use the identity 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 =
(
n(n+1)

2

)2
to obtain

S =

(
9 · 10

2

)2

− 9 = 452 − 9 = 2016.
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