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1 Team Problems

Problem 1. The points (1, 2, 3) and (3, 3, 2) are vertices of a cube. Compute the product of all possible distinct
volumes of the cube.

Problem 2. Eight students attend a Harper Valley ARML practice. At the end of the practice, they decide to
take selfies to celebrate the event. Each selfie will have either two or three students in the picture. Compute
the minimum number of selfies so that each pair of the eight students appears in exactly one selfie.

Problem 3. Compute the least positive value of t such that

Arcsin
(
sin(t)

)
, Arccos

(
cos(t)

)
, Arctan

(
tan(t)

)
form (in some order) a three-term arithmetic progression with a nonzero common difference.

Problem 4. In non-right triangle ABC, distinct points P , Q, R, and S lie on BC in that order such that
∠BAP ∼= ∠PAQ ∼= ∠QAR ∼= ∠RAS ∼= ∠SAC. Given that the angles of 4ABC are congruent to the angles
of 4APQ in some order of correspondence, compute m∠B in degrees.

Problem 5. Consider the system of equations

log4 x+ log8(yz) = 2

log4 y + log8(xz) = 4

log4 z + log8(xy) = 5.

Given that xyz can be expressed in the form 2k, compute k.

Problem 6. A complex number z is selected uniformly at random such that |z| = 1. Compute the probability
that z and z2019 both lie in Quadrant II in the complex plane.

Problem 7. Compute the least positive integer n such that the sum of the digits of n is five times the sum of the
digits of (n+ 2019).

Problem 8. Compute the greatest real number K for which the graphs of

(|x| − 5)2 + (|y| − 5)2 = K and (x− 1)2 + (y + 1)2 = 37

have exactly two intersection points.

Problem 9. To morph a sequence means to replace two terms a and b with a+1 and b−1 if and only if a+1 < b−1,
and such an operation is referred to as a morph. Compute the least number of morphs needed to transform
the sequence 12, 22, 32, . . . , 102 into an arithmetic progression.

Problem 10. Triangle ABC is inscribed in circle ω. The tangents to ω at B and C meet at point T . The tangent
to ω at A intersects the perpendicular bisector of AT at point P . Given that AB = 14, AC = 30, and BC = 40,
compute [PBC].
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2 Answers to Team Problems

Answer 1. 216

Answer 2. 12

Answer 3.
3π

4

Answer 4.
45

2
(or 2212 or 22.5)

Answer 5.
66

7
(or 937)

Answer 6.
505

8076

Answer 7. 7986

Answer 8. 29

Answer 9. 56

Answer 10.
800

3
(or 26623 or 266.6)
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3 Solutions to Team Problems

Problem 1. The points (1, 2, 3) and (3, 3, 2) are vertices of a cube. Compute the product of all possible distinct
volumes of the cube.

Solution 1. The distance between points A(1, 2, 3) and B(3, 3, 2) is AB =
√

(3− 1)2 + (3− 2)2 + (2− 3)2 =
√

6.
Denote by s the side length of the cube. Consider three possibilities.

• If AB is an edge of the cube, then AB = s, so one possibility is s1 =
√

6.

• If AB is a face diagonal of the cube, then AB = s
√

2, so another possibility is s2 =
√

3.

• If AB is a space diagonal of the cube, then AB = s
√

3, so the last possibility is s3 =
√

2.

The answer is then s31s
3
2s

3
3 = (s1s2s3)3 = 63 = 216.

Problem 2. Eight students attend a Harper Valley ARML practice. At the end of the practice, they decide to
take selfies to celebrate the event. Each selfie will have either two or three students in the picture. Compute
the minimum number of selfies so that each pair of the eight students appears in exactly one selfie.

Solution 2. The answer is 12. To give an example in which 12 selfies is possible, consider regular octagon
P1P2P3P4P5P6P7P8. Each vertex of the octagon represents a student and each of the diagonals and sides of
the octagon represents a pair of students. Construct eight triangles P1P2P4, P2P3P5, P3P4P6, . . . , P8P1P3.
Each of the segments in the forms of PiPi+1, PiPi+2, PiPi+3 appears exactly once in these eight triangles. Tak-
ing 8 three-person selfies (namely {P1, P2, P4}, {P2, P3, P5}, . . . , {P8, P1, P3}) and 4 two-person selfies (namely
{P1, P5}, {P2, P6}, {P3, P7}, {P4, P8}) gives a total of 12 selfies, completing the desired task.

A diagram of this construction is shown below. Each of the eight triangles is a different color, and each
of the two-person selfies is represented by a dotted diameter.

P1

P2

P3

P4 P5

P6

P7

P8

It remains to show fewer than 12 selfies is impossible. Assume that the students took x three-person selfies
and y two-person selfies. Each three-person selfie counts 3 pairs of student appearances (in a selfie), and each
two-person selfie counts 1 pair of student appearances (in a selfie). Together, these selfies count 3x + y pairs
of student appearances. There are

(
8
2

)
= 28 pairs of student appearances. Hence 3x+ y = 28. The number of
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selfies is x+ y = 28− 2x, so it is enough to show that x ≤ 8.

Assume for contradiction there are x ≥ 9 three-person selfies; then there are at least 3 · 9 = 27 (individ-
ual) student appearances on these selfies. Because there are 8 students, some student s1 had at least d27/8e
appearances; that is, s1 appeared in at least 4 of these three-person selfies. There are 2 · 4 = 8 (individual)
student appearances other than s1 on these 4 selfies. Because there are only 7 students besides s1, some other
student s2 had at least d8/7e (individual) appearances on these 4 selfies; that is, s2 appeared (with s1) in at
least 2 of these 4 three-person selfies, violating the condition that each pair of the students appears in exactly
one selfie. Thus the answer is 12.

Problem 3. Compute the least positive value of t such that

Arcsin
(
sin(t)

)
, Arccos

(
cos(t)

)
, Arctan

(
tan(t)

)
form (in some order) a three-term arithmetic progression with a nonzero common difference.

Solution 3. For 0 ≤ t < π/2, all three values are t, so the desired t does not lie in this interval.

For π/2 < t < π,

Arcsin(sin(t)) = π − t ∈ (0, π/2)

Arccos(cos(t)) = t ∈ (π/2, π)

Arctan(tan(t)) = t− π ∈ (−π/2, 0) .

A graph of all three functions is shown below.

Arcsin(sin(t))

Arccos(cos(t))

Arctan(tan(t))

0 1
4
π 1

2
π 3

4
π π

1
4
π

1
2
π

3
4
π

π

(3
4
π, 3

4
π)

(3
4
π, 1

4
π)

(3
4
π,−1

4
π)

Thus if the three numbers are to form an arithmetic progression, they should satisfy

t− π < π − t < t.

The three numbers will be in arithmetic progression if and only if t+ (t−π) = 2(π− t), which implies t =
3π

4
.

Note that if t =
3π

4
, the arithmetic progression is −π

4
,
π

4
,

3π

4
, as required.
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Problem 4. In non-right triangle ABC, distinct points P , Q, R, and S lie on BC in that order such that
∠BAP ∼= ∠PAQ ∼= ∠QAR ∼= ∠RAS ∼= ∠SAC. Given that the angles of 4ABC are congruent to the angles
of 4APQ in some order of correspondence, compute m∠B in degrees.

Solution 4. Let θ = 1
5m∠A. Because m∠PAQ = θ < 5θ = m∠A, it follows that either m∠B = θ or m∠C = θ.

Thus there are two cases to consider.

If m∠C = θ, then it follows that m∠AQP = m∠QAC + m∠ACB = 4θ, and hence m∠B = 4θ. So 4ABC has
angles of measures 5θ, 4θ, θ, and thus θ = 18◦. However, this implies m∠A = 5θ = 90◦, which is not the case.

θ θ θ
θ
θ

θ4θ4θ

A

B C
P Q R S

If instead m∠B = θ, then it follows that m∠APQ = m∠BAP + m∠ABP = 2θ, and hence m∠C = 2θ. So
4ABC has angles of measures 5θ, 2θ, θ, and thus θ = 22.5◦. Hence m∠B = θ = 22.5◦.

θ
θ θ θ θ

θ 2θ 2θ

A

B C
P Q R S

Problem 5. Consider the system of equations

log4 x+ log8(yz) = 2

log4 y + log8(xz) = 4

log4 z + log8(xy) = 5.

Given that xyz can be expressed in the form 2k, compute k.

Solution 5. Note that for n > 0, log4 n = log64 n
3 and log8 n = log64 n

2. Adding together the three given
equations and using both the preceding facts and properties of logarithms yields

log4(xyz) + log8(x2y2z2) = 11

=⇒ log64(xyz)3 + log64(xyz)4 = 11

=⇒ log64(xyz)7 = 11

=⇒ 7 log64(xyz) = 11.

The last equation is equivalent to xyz = 6411/7 = 266/7, hence the desired value of k is
66

7
.
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Problem 6. A complex number z is selected uniformly at random such that |z| = 1. Compute the probability
that z and z2019 both lie in Quadrant II in the complex plane.

Solution 6. For convenience, let α = π/4038. Denote by

0 ≤ θ < 2π = 8076α

the complex argument of z, selected uniformly at random from the interval [0, 2π). Then z itself lies in Quadrant
II if and only if

2019α =
π

2
< θ < π = 4038α.

On the other hand, z2019 has argument 2019θ, and hence it lies in Quadrant II if and only if there is some
integer k with

π

2
+ 2kπ < 2019θ < π + 2kπ

⇐⇒ (4k + 1) · π
2
< 2019θ < (4k + 2) · π

2
⇐⇒ (4k + 1)α < θ < (4k + 2)α.

Because it is also true that 2019α < θ < 4038α, the set of θ that satisfies the conditions of the problem is the
union of intervals:

(2021α, 2022α) ∪ (2025α, 2026α) ∪ · · · ∪ (4037α, 4038α).

There are 505 such intervals, the jth interval consisting of (4j + 2017)α < θ < (4j + 2018)α. Each interval has
length α, so the sum of the intervals has length 505α. Thus the final answer is

505α

2π
=

505

2 · 4038
=

505

8076
.

Problem 7. Compute the least positive integer n such that the sum of the digits of n is five times the sum of the
digits of (n+ 2019).

Solution 7. Let S(n) denote the sum of the digits of n, so that solving the problem is equivalent to solving
S(n) = 5S(n+ 2019). Using the fact that S(n) ≡ n (mod 9) for all n, it follows that

n ≡ 5(n+ 2019) ≡ 5(n+ 3) (mod 9)

4n ≡ −15 (mod 9)

n ≡ 3 (mod 9).

Then S(n + 2019) ≡ 6 (mod 9). In particular, S(n + 2019) ≥ 6 and S(n) ≥ 5 · 6 = 30. The latter inequality
implies n ≥ 3999, which then gives n + 2019 ≥ 6018. Thus if n + 2019 were a four-digit number, then
S(n+ 2019) ≥ 7. Moreover, S(n+ 2019) can only be 7, because otherwise, S(n) = 5S(n+ 2019) ≥ 40, which is
impossible (if n has four digits, then S(n) can be no greater than 36). So if n+ 2019 were a four-digit number,
then S(n + 2019) = 7 and S(n) = 35. But this would imply that the digits of n are 8, 9, 9, 9 in some order,
contradicting the assumption that n + 2019 is a four-digit number. On the other hand, if n + 2019 were a
five-digit number such that S(n + 2019) ≥ 6, then the least such value of n + 2019 is 10005, and indeed, this
works because it corresponds to n = 7986, the least possible value of n.

Problem 8. Compute the greatest real number K for which the graphs of

(|x| − 5)2 + (|y| − 5)2 = K and (x− 1)2 + (y + 1)2 = 37

have exactly two intersection points.
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Solution 8. The graph of the second equation is simply the circle of radius
√

37 centered at (1,−1). The first
graph is more interesting, and its behavior depends on K.

• For small values of K, the first equation determines a set of four circles of radius
√
K with centers at

(5, 5), (5,−5), (−5, 5), and (−5,−5). Shown below are versions with K = 1, K = 4, and K = 16.

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

• However, when K > 25, the graph no longer consists of four circles! As an example, for K = 36, the value
x = 5 gives (|y| − 5)2 = 36; hence |y| = −1 or |y| = 6. The first option is impossible; the graph ends up
“losing” the portions of the upper-right circle that would cross the x- or y-axes compared to the graph
for (x− 5)2 + (y − 5)2 = 36. The graph for K = 36 is shown below.

-10 -5 0 5 10

-10

-5

0

5

10

• As K continues to increase, the “interior” part of the curve continues to shrink, until at K = 50, it simply
comprises the origin, and for K > 50, it does not exist. As examples, the graphs with K = 50 and K = 64
are shown below.

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

ARML encourages the reproduction of our contest problems for non-commercial, educational purposes.

Commercial usage of ARML problems without permission and posting entire contests or contest books are prohibited.

7



Overlay the graph of the circle of radius
√

37 centered at (1,−1) with the given graphs. When K = 25, this
looks like the following graph.

-10 -5 0 5 10

-10

-5

0

5

10

Note that the two graphs intersect at (0, 5) and (−5, 0), as well as four more points (two points near the
positive x-axis and two points near the negative y-axis). When K is slightly greater than 25, this drops to four
intersection points. The graph for K = 27 is shown below.

-10 -5 0 5 10

-10

-5

0

5

10

Thus for the greatest K for which there are exactly two intersection points, those two intersection points should
be along the positive x- and negative y-axes. If the intersection point on the positive x-axis is at (h, 0), then
(h− 1)2 + (0 + 1)2 = 37 and (h− 5)2 + (0− 5)2 = K. Thus h = 7 and K = 29.

Problem 9. To morph a sequence means to replace two terms a and b with a+1 and b−1 if and only if a+1 < b−1,
and such an operation is referred to as a morph. Compute the least number of morphs needed to transform
the sequence 12, 22, 32, . . . , 102 into an arithmetic progression.

Solution 9. Call the original sequence of ten squares T = (12, 22, . . . , 102). A morphed sequence is one that can
be obtained by morphing T a finite number of times.

This solution is divided into three steps. In the first step, a characterization of the possible final morphed
sequences is given. In the second step, a lower bound on the number of steps is given, and in the third step, it
is shown that this bound can be achieved.

Step 1. Note the following.

• The sum of the elements of T is 12 + 22 + · · · + 102 = 385, and morphs are sum-preserving. So any
morphed sequence has sum 385 and a mean of 38.5.

• The sequence T has positive integer terms, and morphs preserve this property. Thus any morphed
sequence has positive integer terms.

• The sequence T is strictly increasing, and morphs preserve this property. Thus any morphed sequence
is strictly increasing.
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Now if the morphed sequence is an arithmetic progression, it follows from the above three observations
that it must have the form

(38.5− 4.5d, 38.5− 3.5d, . . . , 38.5 + 4.5d)

where d is an odd positive integer satisfying 38.5 − 4.5d > 0. Therefore the only possible values of d are
7, 5, 3, 1; thus there are at most four possibilities for the morphed sequence, shown in the table below.
Denote these four sequences by A, B, C, D.

T 1 4 9 16 25 36 49 64 81 100
d = 7 : A 7 14 21 28 35 42 49 56 63 70
d = 5 : B 16 21 26 31 36 41 46 51 56 61
d = 3 : C 25 28 31 34 37 40 43 46 49 52
d = 1 : D 34 35 36 37 38 39 40 41 42 43

Step 2. Given any two sequences X = (x1, . . . , x10) and Y = (y1, . . . , y10) with
∑10

i=1 xi =
∑10

i=1 yi = 385,
define the taxicab distance

ρ(X,Y ) =
10∑
i=1

|xi − yi|.

Observe that if X ′ is a morph of X, then ρ(X ′, Y ) ≥ ρ(X,Y ) − 2. Therefore the number of morphs
required to transform T into some sequence Z is at least 1

2ρ(T,Z). Now

1

2
ρ(T,A) =

1

2

10∑
i=1

∣∣i2 − 7i
∣∣ = 56

and also ρ(T,A) < min (ρ(T,B), ρ(T,C), ρ(T,D)). Thus at least 56 morphs are needed to obtain sequence
A (and more morphs would be required to obtain any of sequences B, C, or D).

Step 3. To conclude, it remains to verify that one can make 56 morphs and arrive from T to A. One of many
possible constructions is given below.

T 1 4 9 16 25 36 49 64 81 100
6 morphs 1 4 9 16 25 42 49 58 81 100
2 morphs 1 4 9 16 27 42 49 56 81 100
8 morphs 1 4 9 16 35 42 49 56 73 100

10 morphs 1 4 9 26 35 42 49 56 63 100
2 morphs 1 4 9 28 35 42 49 56 63 98

12 morphs 1 4 21 28 35 42 49 56 63 86
10 morphs 1 14 21 28 35 42 49 56 63 76
6 morphs 7 14 21 28 35 42 49 56 63 70

Therefore the least number of morphs needed to transform T into an arithmetic progression is 56.

Remark: For step 3, one may prove more generally that any sequence of 56 morphs works as long as both of
the following conditions hold:

• each morph increases one of the first six elements and decreases one of the last three elements, and

• at all times, the ith term is at most 7i for i ≤ 6, and at least 7i for i ≥ 8.

Problem 10. Triangle ABC is inscribed in circle ω. The tangents to ω at B and C meet at point T . The tangent
to ω at A intersects the perpendicular bisector of AT at point P . Given that AB = 14, AC = 30, and BC = 40,
compute [PBC].
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Solution 10. To begin, denote by R the radius of ω. The semiperimeter of triangle ABC is 42, and then applying
Heron’s formula yields

[ABC] =
14 · 30 · 40

4R
=
√

42 · 28 · 12 · 2 = 168

from which it follows that R =
14 · 30 · 40

4 · 168
= 25.

Now consider the point circle with radius zero centered at T in tandem with the circle ω. Because PA = PT ,
it follows that P lies on the radical axis of these circles. Moreover, the midpoints of TB and TC lie on this
radical axis as well. Thus P lies on the midline of 4TBC that is parallel to BC.

A

B C

T

M

O

P

To finish, let O denote the center of ω and M the midpoint of BC. By considering right triangle TBO with
altitude BM , it follows that MT ·MO = MB2, but also MO =

√
OB2 −MB2 =

√
252 − 202 = 15, so

MT =
MB2

MO
=

400

15
=

80

3
.

Thus the distance from P to BC is 1
2MT = 40

3 . Finally,

[PBC] =
1

2
· 40

3
·BC =

800

3
.
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4 Power Question 2019: Elizabeth’s Escape

Instructions: The power question is worth 50 points; each part’s point value is given in brackets next to the part.
To receive full credit, the presentation must be legible, orderly, clear, and concise. If a problem says “list” or “com-
pute,” you need not justify your answer. If a problem says “determine,” “find,” or “show,” then you must show
your work or explain your reasoning to receive full credit, although such explanations do not have to be lengthy. If a
problem says “justify” or “prove,” then you must prove your answer rigorously. Even if not proved, earlier numbered
items may be used in solutions to later numbered items, but not vice versa. Pages submitted for credit should be
NUMBERED IN CONSECUTIVE ORDER AT THE TOP OF EACH PAGE in what your team considers to be
proper sequential order. PLEASE WRITE ON ONLY ONE SIDE OF THE ANSWER PAPERS. Put the TEAM
NUMBER (not the team name) on the cover sheet used as the first page of the papers submitted. Do not identify
the team in any other way.

Elizabeth is in an “escape room” puzzle. She is in a room with one door which is locked at the start of the puzzle.
The room contains n light switches, each of which is initially off. Each minute, she must flip exactly k different light
switches (to “flip” a switch means to turn it on if it is currently off, and off if it is currently on). At the end of each
minute, if all of the switches are on, then the door unlocks and Elizabeth escapes from the room.

Let E(n, k) be the minimum number of minutes required for Elizabeth to escape, for positive integers n, k with
k ≤ n. For example, E(2, 1) = 2 because Elizabeth cannot escape in one minute (there are two switches and one
must be flipped every minute) but she can escape in two minutes (by flipping Switch 1 in the first minute and Switch
2 in the second minute). Define E(n, k) = ∞ if the puzzle is impossible to solve (that is, if it is impossible to have
all switches on at the end of any minute).

For convenience, assume the n light switches are numbered 1 through n.

1. Compute the following.

a. E(6, 1) [1 pt]

b. E(6, 2) [1 pt]

c. E(7, 3) [1 pt]

d. E(9, 5) [1 pt]

2. Find the following in terms of n.

a. E(n, 2) for positive even integers n [2 pts]

b. E(n, 3) for values of n of the form n = 3a+ 2 where a is a positive integer [2 pts]

c. E(n, n− 2) for n ≥ 5 [2 pts]

3. Find an integer value of k with 1 < k < 2019 such that E(2019, k) =∞. [3 pts]

4. a. Show that if n+ k is even and n
2 < k < n, then E(n, k) = 3. [3 pts]

b. Show that if n is even and k is odd, then E(n, k) = E(n, n− k). [3 pts]

5. Find the following.

a. E(2020, 1993) [3 pts]

b. E(2001, 501) [3 pts]

6. a. Show that if n and k are both even and k ≤ n
2 , then E(n, k) = dnk e. [3 pts]

b. Prove that if k is odd and k ≤ n
2 , then either E(n, k) = dnk e or E(n, k) = dnk e+ 1. [4 pts]

7. Find all ordered pairs (n, k) for which E(n, k) = 3. [3 pts]
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One might guess that in most cases, E(n, k) ≈ n
k . In light of this guess, define the inefficiency of the ordered

pair (n, k), denoted I(n, k), as

I(n, k) = E(n, k)− n

k

if E(n, k) 6=∞. If E(n, k) =∞, then by convention, I(n, k) is undefined.

8. a. Compute I(6, 3). [1 pt]

b. Compute I(5, 3). [1 pt]

c. Find positive integers n and k for which I(n, k) = 15
8 . [2 pts]

d. Prove that for any integer x > 2, there exists an ordered pair (n, k) for which I(n, k) > x. [3 pts]

9. Let S be the set of values of I(n, k) for all n, k for which k < n
2 and I(n, k) is defined. Find the least upper

bound of S. Prove that your answer is correct. [4 pts]

10. Find two distinct non-integral positive rational numbers that are not the inefficiency of any ordered pair. That
is, find positive rational numbers q1 and q2 with q1 6= q2 such that neither q1 nor q2 is an integer and such that
neither q1 nor q2 is I(n, k) for any integers n and k. Prove that your answers are correct. [4 pts]
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5 Solutions to Power Question

First, notice that a light switch is on if it has been flipped an odd number of times, and off if it has been flipped an
even number of times.

We use the notation {a1, a2, . . . , ak} to denote the set of k switches flipped in any given minute.

1. a. E(6, 1) = 6. Note that at least six minutes are required because exactly one switch is flipped each minute.
By flipping all six switches (in any order) in the first six minutes, the door will open in six minutes.

b. E(6, 2) = 3. The sequence {1, 2}, {3, 4}, {5, 6} will allow Elizabeth to escape the room in three minutes.
It is not possible to escape the room in fewer than three minutes because every switch must be flipped,
and that requires at least 6

2 = 3 minutes.

c. E(7, 3) = 3. First, note that E(7, 3) ≥ 3, because after only two minutes, it is impossible to flip each
switch at least once. It is possible to escape in three minutes with the sequence {1, 2, 3}, {1, 4, 5}, and
{1, 6, 7}.

d. E(9, 5) = 3. Notice that E(9, 5) 6= 1 because each switch must be flipped at least once, and only five
switches can be flipped in one minute. Notice also that E(9, 5) 6= 2 because after two minutes, there have
been 10 flips, but in order to escape the room, each switch must be flipped at least once, and this requires
9 of the 10 flips. However, the tenth flip of a switch returns one of the nine switches to the off position, so
it is not possible for Elizabeth to escape in two minutes. In three minutes, however, Elizabeth can escape
with the sequence {1, 2, 3, 4, 5}, {1, 2, 3, 6, 7}, {1, 2, 3, 8, 9}.

2. a. If n is even, then E(n, 2) = n
2 . This is the minimum number of minutes required to flip each switch at

least once, and Elizabeth can clearly escape in n
2 minutes by flipping each switch exactly once.

b. If n = 3a+ 2 (a ≥ 1), then E(n, 3) = a+ 2. The minimum number of minutes required to flip each switch
once is a + 1, but as in Problem 1d, this leaves exactly one “extra flip”, so some switch must be flipped
exactly twice. However, in a + 2 = n+4

3 minutes, Elizabeth can escape by starting with the sequence
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, and flipping each remaining switch exactly once.

c. If n ≥ 5, then E(n, n − 2) = 3. Note that Elizabeth cannot flip every switch in one minute, and after
two minutes, some switch (in fact, many switches) must be flipped exactly twice. However, Elizabeth can
escape in three minutes using the sequence {1, 4, 5, . . . , n}, {2, 4, 5, . . . , n}, {3, 4, 5, . . . , n}.

3. The answer is that k can be any even number between 2 and 2018 inclusive. If Elizabeth escapes, each switch
must have been flipped an odd number of times. Because there are 2019 switches, the total number of flips
must be odd. However, if an even number of flips are performed each minute, then the total number of flips
cannot be odd. Therefore the puzzle is impossible, and E(2019, k) =∞.

Alternate Solution: As in Problem 2a, consider the number of lights that are on after each minute. Flipping
an even number of switches either leaves this number unchanged, or increases or decreases it by an even number.
Because the puzzle starts with 0 lights on, and 2019 is odd, it is impossible to have 2019 lights on at the end
of any minute. Thus E(2019, k) =∞.

4. a. First, because k < n, not all switches can be flipped in one minute, and so E(n, k) 6= 1. Second, because
k > n

2 , some switches must be flipped twice in the first two minutes, and so E(n, k) 6= 2.

Here is a strategy by which Elizabeth can escape in three minutes. Note that because n + k is even,
it follows that 3k − n = (k + n) + 2(k − n) is also even. Then let 3k − n = 2b. Note that b > 0 (because
k > n

2 ), and b < k (because k < n).

Elizabeth’s strategy is to flip switches 1 through b three times each, and the remaining n− b switches once
each. This is possible because n−b = (3k−2b)−b = 3(k−b) is divisible by 3, and b+ n−b

3 = b+(k−b) = k.
Therefore, each minute, Elizabeth can flip switches 1 through b, and one-third of the 3(k − b) switches
from b+ 1 through n. This allows her to escape in three minutes, as desired.
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b. Because n is even, and because each switch must be flipped an odd number of times in order to escape,
the total number of flips is even. Because k must be odd, E(n, k) must be even. To show this, consider
the case where E(n, k) is odd. If E(n, k) is odd, then an odd number of flips happen an odd number of
times, resulting in an odd number of total flips. This is a contradiction because n is even.

Call a switch “non-flipped” in any given minute if it is not among the switches flipped in that minute.
Because E(n, k) (i.e., the total number of minutes) is even, and each switch is flipped an odd number
of times, each switch must also be non-flipped an odd number of times. Therefore any sequence of flips
that solves the “(n, k) puzzle” can be made into a sequence of flips that solves the “(n, n − k)” puzzle
by interchanging flips and non-flips. These sequences last for the same number of minutes, and therefore
E(n, k) = E(n, n− k).

5. a. E(2020, 1993) = 76. By the result of Problem 4, conclude that E(2020, 1993) = E(2020, 27). Compute the
latter instead. Because 2020

27 > 74, it will require at least 75 minutes to flip each switch once. Furthermore,
E(2020, 27) ≥ 76 because the solution to Problem 4 implies that E(2020, 27) is even.

To solve the puzzle in exactly 76 minutes, use the following strategy. For the first 33 minutes, flip
switch 1, along with the first 26 switches that have not yet been flipped. The end result is that lights 1
through 26 · 33 + 1 = 859 are on, and the remaining 1161 lights are off. Note that 1161 = 27 · 43, so it
takes 43 minutes to flip each remaining switch exactly once, for a total of 76 minutes, as desired.

b. E(2001, 501) = 5. First, note that three minutes is not enough time to flip each switch once. In four
minutes, Elizabeth can flip each switch once, but has three flips left over. Because there are an odd
number of leftover flips to distribute among the 2001 switches, some switch must get an odd number of
leftover flips, and thus an even number of total flips. Thus E(2001, 501) > 4.

To solve the puzzle in five minutes, Elizabeth can flip the following sets of switches:

• in the first minute, {1, 2, 3, . . . , 501};
• in the second minute, {1, 2, 3, . . . , 102} and {502, 503, 504, . . . , 900};
• in the third minute, {1, 2, 3, . . . , 102} and {901, 902, 903, . . . , 1299};
• in the fourth minute, {1, 2, 3, . . . , 100} and {1300, 1301, 1302, . . . , 1700};
• in the fifth minute, {1, 2, 3, . . . , 100} and {1701, 1702, 1703, . . . , 2001}.

This results in switches 1, 2, 3, . . . , 100 being flipped five times, switches 101 and 102 being flipped three
times, and the remaining switches being flipped exactly once, so that all the lights are on at the end of
the fifth minute.

6. a. First, if k divides n, then E(n, k) = n
k = dnk e. Assume then that k does not divide n. Then let r = dnk e,

which implies (r − 1)k < n < rk.

Because (r−1)k < n, it follows that r−1 minutes are not enough to flip each switch once, so E(n, k) ≥ r.

Because n and k are even, it follows that rk and rk − n are also even. Then rk − n = 2b for some
integer b ≥ 1, and note that b < k because rk − k < n. Then the following strategy turns all of the lights
on in r minutes.

• In each of the first three minutes, flip switches 1 through b, along with the next k − b switches
that have not yet been flipped. This leaves b + 3(k − b) lights on, and the rest off. Note that
b+ 3(k − b) = 3k − 2b = 3k − (rk − n) = n− k(r − 3).

• In each of the remaining r − 3 minutes, flip the first k switches that have never been flipped before.

This strategy turns on the remaining k(r − 3) lights, and Elizabeth escapes the room after r minutes.

b. First, if k divides n, then E(n, k) = n
k = dnk e. Assume then that k does not divide n. Then let r = dnk e,

which implies (r − 1)k < n < rk.

Because (r−1)k < n, it follows that r−1 minutes are not enough to flip each switch once, so E(n, k) ≥ r.
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Exactly one of rk − n and (r + 1)k − n is even. There are two cases.

Case 1: Suppose rk − n = 2b for some integer b ≥ 1. As in the solution to Problem 6a, b < k. Then the
following strategy turns all of the lights on in r minutes.

• In each of the first three minutes, flip switches 1 through b, along with the next k − b switches
that have not yet been flipped. This leaves b + 3(k − b) lights on, and the rest off. Note that
b+ 3(k − b) = 3k − 2b = 3k − (rk − n) = n− k(r − 3).

• In each of the remaining r − 3 minutes, flip the first k switches that have never been flipped before.

This strategy turns on the remaining k(r − 3) lights, and Elizabeth escapes the room after r minutes.

Case 2: Suppose (r+ 1)k− n = 2b for some integer b ≥ 1. As in the solution to Problem 6a, b < k. Then
the following strategy turns all of the lights on in r + 1 minutes.

• In each of the first three minutes, flip switches 1 through b, along with the next k − b switches
that have not yet been flipped. This leaves b + 3(k − b) lights on, and the rest off. Note that
b+ 3(k − b) = 3k − 2b = 3k − (rk + k − n) = n− k(r − 2).

• In each of the remaining r − 2 minutes, flip the first k switches that have never been flipped before.

This strategy turns on the remaining k(r− 2) lights, and Elizabeth escapes the room after r+ 1 minutes.

7. Consider the parity of n and of k. If n is odd and k is even, then as shown in Problem 3, E(n, k) = ∞ 6= 3.
If n is even and k is odd, then as noted in the solution to Problem 5, E(n, k) is even, so E(n, k) 6= 3. If n
and k are either both even or both odd and n

3 ≤ k < n, then the argument in Problem 4 shows that E(n, k) = 3.

If k < n
3 , then three minutes is not enough time to flip each switch at least once, so E(n, k) > 3.

If k = n, then E(n, k) = 1.

Therefore E(n, k) = 3 if and only if n+ k is even (that is, n and k have the same parity) and n
3 ≤ k < n.

8. a. I(6, 3) = 0. By definition, I(6, 3) = E(6, 3)− 6
3 . Because 3 | 6, E(6, 3) = 6

3 = 2, and so I(6, 3) = 2−2 = 0.

b. I(5, 3) = 4
3 . By definition, I(5, 3) = E(5, 3) − 5

3 . By Problem 2b, E(5, 3) = E(3 · 1 + 2, 3) = 1 + 2 = 3,
and so I(5, 3) = 3− 5

3 = 4
3 .

c. One such pair is (n, k) = (18, 16). If I(n, k) = 15
8 , then E(n, k)− n

k = 15
8 . Note that E(n, k) > 2 because

k < n.
Suppose E(n, k) = 3. Then n

k = 9
8 . From Problem 7, E(n, k) = 3 if and only if n and k have the same

parity and n
3 ≤ k < n, so let n = 18 and k = 16. Then, I(18, 16) = E(18, 16) − 18

16 = 3 − 9
8 = 15

8 , as
desired.

d. Let n = 2x and k = 2x− 1 for some positive integer x. Then n is even and k is odd, so Problem 4 applies,
and E(n, k) = E(n, n− k) = E(n, 1) = 2x. Therefore I(n, k) = 2x− 2x

2x−1 . Because x > 2, it follows that
2x

2x−1 < 2 < x, so I(n, k) > x, as desired.

9. The least upper bound of S is 2. First, note that Problems 6a and 6b together show that if k < n
2 , then E(n, k)

is either dnk e or dnk e+ 1 (or ∞ in the case where k is even and n is odd). Therefore I(n, k) ≤ 2 because E(n, k)
is at most dnk e+ 1 and dnk e+ 1− n

k ≤ 2.

Now it will be shown that I(n, k) can be arbitrarily close to 2. To do this, use values of n and k that
are both odd, such that dnk e is even. Specifically, let n = 3k+2 for k odd; then dnk e = 4. Therefore E(n, k) = 5
by Problem 6b, and

I(n, k) = 5− 3k + 2

k
= 2− 2

k
.

Letting k be a large odd integer, this gives an ordered pair (n, k) with I(n, k) arbitrarily close to 2, as desired.

Combining these two claims shows that the least upper bound of S is 2.
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10. It should be noted that integer answers are not possible because no positive integer can be the inefficiency of an
ordered pair (n, k). This is because if I(n, k) = E(n, k)− n

k is an integer, then n
k is an integer so E(n, k) = n

k
and I(n, k) = 0.

To find non-integral rational numbers that cannot be the inefficiency of any ordered pair, start with a simple
lemma.

Lemma: Given positive integers n, k, and r, E(rn, rk) ≤ E(n, k).

Proof: If n is odd and k is even, then E(n, k) = ∞ and the lemma is trivially true. Otherwise there is
a sequence of E(n, k) sets of switches to flip which will result in escape. Partition the rn switches into r groups
of n switches, and apply the strategy within each of the r groups, which uses rk flips per minute. This will
achieve escape in E(n, k) minutes, so E(rn, rk) is at most E(n, k). 2

The values E(n, k) and E(rk, nk) can certainly equal one other, as when n is a multiple of k. The inequality
can also be strict. For example, E(4, 3) = E(4, 1) = 4 but E(8, 6) = 3 are obtained from values from earlier
work.

One implication of the above lemma is that I(n, k) ≥ I(rn, rk).

Now all rational numbers q with 0 < q < 1 are the inefficiency of some ordered pair (n, k). To show this,
let r = 3 − q = a

b in lowest terms. Then r > 2 so a > 2b, and by Problem 6a, E(2a, 2b) = dab e = 3 and
I(2a, 2b) = 3− a

b = q.

Next, all rational numbers q with 1 < q < 2 are the inefficiency of some ordered pair (n, k). Again, let
3 − q = a

b in lowest terms. The fact that 1 < q < 2 implies that 1 < a
b < 2. So by Problem 4a, E(2a, 2b) = 3

and I(2a, 2b) = 3− a
b = q.

If n
k = 2, then I(n, k) = 0 as noted above, while if n

k > 2, Problem 6b concludes that E(n, k) = dnk e or
E(n, k) = dnk e+ 1. In either case, I(n, k) ≤ dnk e+ 1− n

k < 2. As all nonnegative rational numbers less than 2
(except the excluded integer 1) have already been shown to be inefficiencies of ordered pairs, the cases n

k ≥ 2
can now be excluded from consideration.

Consider ordered pairs (n, k) with 1 < n
k < 2. If n + k is even, Problem 4a implies that E(n, k) = 3 so

I(n, k) = 3− n
k < 2 and once again, all such numbers are already known to be inefficiencies. Of course if n is

odd and k is even, then I(n, k) is undefined.

Combining these results shows that a rational number will not be the inefficiency of some ordered pair simply
whenever it is greater than 2 and avoids being the inefficiency of any ordered pair (n, k) where 1 < n

k < 2, n is
even, and k is odd.

Let a
b > 2 be a non-integral rational number in lowest terms. If a

b is the inefficiency of some ordered pair (n, k),
then a

b = E(n, k)− n
k . Because E(n, k) is an integer, it follows that a

b + n
k is also an integer. Because 1 < n

k < 2,
there is exactly one integer that it can be.

To find non-integral rational numbers that are not the inefficiency of any ordered pair (n, k), choose a ra-
tional number a

b in such a way that the only possible choice for n
k , in lowest terms, leads to I(n, k) < a

b . Then
because I(rn, rk) ≤ I(n, k), no choice of n and k can possibly lead to I(n, k) = a

b .

One such choice is a
b = 11

3 . The only integer between 11
3 + 1 and 11

3 + 2 is 11
3 + 4

3 = 5. Choosing
n = 4 and k = 3 satisfies the conditions that n is even, k is odd, and 1 < n

k < 2, and also leads to
I(4, 3) = E(4, 3) − 4

3 = E(4, 1) − 4
3 = 4 − 4

3 = 8
3 < 11

3 . Thus no ordered pair (n, k) in the ratio n
k = 4

3
can yield an inefficiency of 11

3 .
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Another choice that will work is a
b = 17

5 . The only n
k that could yield such an inefficiency would be 8

5
(again, note that n is even, k is odd, and 1 < n

k < 2). Then I(8, 5) = E(8, 5)− 8
5 = 4− 8

5 = 12
5 < 17

5 , and this
is a similar contradiction.

Note that there are many other non-integral rational numbers that are not the inefficiency of any ordered
pair. They just aren’t covered by the method outlined above and require different techniques. For instance, 5

2
is such a number. For such an ordered pair (n, k) would require n

k to be an odd multiple of 1
2 . Now n cannot

be odd with k even; in that case, I(n, k) is not defined. So both n and k are even. But then previous work
shows that I(n, k) < 2, so 5

2 is not an inefficiency of any ordered pair (n, k).
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6 Individual Problems

Problem 1. In rectangle PAUL, pointD is the midpoint of UL and points E and F lie on PL and PA, respectively

such that
PE

EL
=

3

2
and

PF

FA
= 2. Given that PA = 36 and PL = 25, compute the area of pentagon AUDEF .

Problem 2. Rectangle ARML has length 125 and width 8. The rectangle is divided into 1000 squares of area 1
by drawing in gridlines parallel to the sides of ARML. Diagonal AM passes through the interior of exactly n
of the 1000 unit squares. Compute n.

Problem 3. Compute the least integer n > 1 such that the product of all positive divisors of n equals n4.

Problem 4. Each of the six faces of a cube is randomly colored red or blue with equal probability. Compute the
probability that no three faces of the same color share a common vertex.

Problem 5. Scalene triangle ABC has perimeter 2019 and integer side lengths. The angle bisector from C meets
AB at D such that AD = 229. Given that AC and AD are relatively prime, compute BC.

Problem 6. Given that a and b are positive and⌊
20− a

⌋
=
⌊
19− b

⌋
=
⌊
ab
⌋
,

compute the least upper bound of the set of possible values of a+ b.

Problem 7. Compute the number of five-digit integers MART Y , with all digits distinct, such that M > A > R
and R < T < Y .

Problem 8. In parallelogram ARML, points P and Q are the midpoints of sides RM and AL, respectively.
Point X lies on segment PQ, and PX = 3, RX = 4, and PR = 5. Point I lies on segment RX such that

IA = IL. Compute the maximum possible value of
[PQR]

[LIP ]
.

Problem 9. Given that a, b, c, and d are positive integers such that

a! · b! · c! = d! and a+ b+ c+ d = 37,

compute the product abcd.

Problem 10. Compute the value of

sin(6◦) · sin(12◦) · sin(24◦) · sin(42◦) + sin(12◦) · sin(24◦) · sin(42◦).
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7 Answers to Individual Problems

Answer 1. 630

Answer 2. 132

Answer 3. 24

Answer 4.
9

32
(or 0.28125)

Answer 5. 888

Answer 6.
41

5
(or 815 or 8.2)

Answer 7. 1512

Answer 8.
4

3
(or 113 or 1.3)

Answer 9. 2240

Answer 10.
1

16
(or 0.0625)
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8 Solutions to Individual Problems

Problem 1. In rectangle PAUL, pointD is the midpoint of UL and points E and F lie on PL and PA, respectively

such that
PE

EL
=

3

2
and

PF

FA
= 2. Given that PA = 36 and PL = 25, compute the area of pentagon AUDEF .

Solution 1. For convenience, let PA = 3x and let PL = 5y. Then the given equations involving ratios of segment
lengths imply that PE = 3y, EL = 2y, PF = 2x, and FA = x. Then [PAUL] = (3x)(5y) = 15xy and

[AUDEF ] = [PAUL]− [PEF ]− [ELD]

= 15xy − 1

2
(3y)(2x)− 1

2
(2y)

Å
3x

2

ã
= 15xy − 3xy − 3xy

2

=
21xy

2
.

Because 15xy = 36 · 25, it follows that 3xy = 36 · 5 = 180 and that 21xy
2 = 7

2 (3xy) = 7
2 · 180 = 630.

Problem 2. Rectangle ARML has length 125 and width 8. The rectangle is divided into 1000 squares of area 1
by drawing in gridlines parallel to the sides of ARML. Diagonal AM passes through the interior of exactly n
of the 1000 unit squares. Compute n.

Solution 2. Notice that 125 and 8 are relatively prime. Examining rectangles of size a× b where a and b are small
and relatively prime suggests an answer of a + b − 1. To see that this is the case, note that other than the
endpoints, the diagonal does not pass through any vertex of any unit square. After the first square, it must
enter each subsequent square via a vertical or horizontal side. By continuity, the total number of these sides
is the sum of the a − 1 interior vertical lines and b − 1 interior horizontal lines. The diagonal passes through
(a− 1) + (b− 1) = a+ b− 2 additional squares, so the total is a+ b− 1. Because 125 and 8 are relatively prime,
it follows that N = 125 + 8− 1 = 132.

Remark: As an exercise, the reader is encouraged to show that the answer for general a and b is a+b−gcd(a, b).

Problem 3. Compute the least integer n > 1 such that the product of all positive divisors of n equals n4.

Solution 3. Note that every factor pair d and n
d have product n. For the product of all such divisor pairs to

equal n4, there must be exactly 4 divisor pairs, or 8 positive integer divisors. A number has 8 positive integer
divisors if it is of the form a3b1 or a7 where a and b are distinct primes. The prime factorization a3b1 (a 6= b)
provides a set of divisors each of which has 4 options for using a (a0, a1, a2, a3) and an independent 2 options
for using b (b0, b1). Using the least values (a, b) = (2, 3), a3b1 = 24. If instead the prime factorization is a7

(having divisors a0, a1, a2, . . . , a7), the least answer would be 27 = 128. Thus the answer is 24.

Problem 4. Each of the six faces of a cube is randomly colored red or blue with equal probability. Compute the
probability that no three faces of the same color share a common vertex.

Solution 4. There are 26 = 64 colorings of the cube. Let r be the number of faces that are colored red. Define a
monochromatic vertex to be a vertex of the cube for which the three faces meeting there have the same color.
It is clear that a coloring without a monochromatic vertex is only possible in the cases 2 ≤ r ≤ 4. If r = 2 or
r = 4, the only colorings that do not have a monochromatic vertex occur when two opposing faces are colored
with the minority color (red in the r = 2 case, blue in the r = 4 case). Because there are 3 pairs of opposite
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faces of a cube, there are 3 colorings without a monochromatic vertex if r = 2 and another 3 such colorings if
r = 4. For the r = 3 colorings, of which there are 20, the only cases in which there are monochromatic vertices
occur when opposing faces are monochromatic, but in different colors. There are 23 = 8 such colorings, leaving
20− 8 = 12 colorings that do not have a monochromatic vertex. Therefore 3 + 3 + 12 = 18 of the 64 colorings

have no monochromatic vertex, and the answer is
9

32
.

Problem 5. Scalene triangle ABC has perimeter 2019 and integer side lengths. The angle bisector from C meets
AB at D such that AD = 229. Given that AC and AD are relatively prime, compute BC.

Solution 5. Let BC = a,AC = b, AB = c. Also, let AD = e and BD = f . Then a + b + e + f = 2019, the

values a, b, and e + f are integers, and by the Angle Bisector Theorem,
e

f
=
b

a
. So b =

ae

f
=

229a

f
. Because

229 is prime and gcd(b, e) = 1, conclude that f must be an integer multiple of 229. So let f = 229x for some
integer x. Then a = b · x and a+ b+ c = 2019 implies 2019 = bx+ b+ 229 + 229x = (b+ 229)(1 + x). Because
2019 = 673 · 3, it follows that b = 444 and x = 2, from which BC = a = 888.

Problem 6. Given that a and b are positive and⌊
20− a

⌋
=
⌊
19− b

⌋
=
⌊
ab
⌋
,

compute the least upper bound of the set of possible values of a+ b.

Solution 6. Let the common value of the three expressions in the given equation be N . Maximizing a + b
involves making at least one of a and b somewhat large, which makes the first two expressions for N small.
So, to maximize a + b, look for the least possible value of N . One can show that N = 14 is not possible
because that would require a > 5 and b > 4, which implies ab > 20. But N = 15 is possible by setting
a = 4 + x, b = 3 + y, where 0 < x, y ≤ 1. The goal is to find the least upper bound for x + y given
15 ≤ (4 + x)(3 + y) < 16 ⇒ 3 ≤ 3(x + y) + y + xy < 4. This is equivalent to seeking the maximum value of
x + y given 3(x + y) + y + xy ≤ 4. By inspection, if x = 1 and y = 1

5 , then 3(x + y) + y + xy = 4 ≤ 4. This

is in fact optimal. To see this, consider that because 3x+ 3y + y + xy ≤ 4, it follows that y ≤ 4− 3x

x+ 4
, and so

x+ y ≤ x+
4− 3x

x+ 4
≤ x2 + x+ 4

x+ 4
, which is increasing on 0 ≤ x ≤ 1. Thus the maximum for x+ y is attained

when x = 1. Hence the least upper bound for a+ b is 5 + (3 + 1
5 ) =

41

5
.

Problem 7. Compute the number of five-digit integers MART Y , with all digits distinct, such that M > A > R
and R < T < Y .

Solution 7. There are
(
10
5

)
= 252 ways to choose the values of the digits M,A,R, T, Y , without restrictions.

Because R is fixed as the least of the digits and because T < Y , it suffices to find the number of ways to choose
M and A. Once M and A are chosen, the other three digits are uniquely determined. There are

(
4
2

)
= 6 ways

to select M,A. Thus the number of five-digit integers of the type described is 252 · 6 = 1512.

Problem 8. In parallelogram ARML, points P and Q are the midpoints of sides RM and AL, respectively.
Point X lies on segment PQ, and PX = 3, RX = 4, and PR = 5. Point I lies on segment RX such that

IA = IL. Compute the maximum possible value of
[PQR]

[LIP ]
.

Solution 8. Because AI = LI and AQ = LQ, line IQ is the perpendicular bisector of AL. Because ARML is a
parallelogram, QI ⊥ RP . Note also that m∠RXP = 90◦. Thus I is the orthocenter of triangle PQR, from
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which it follows that
←→
PI ⊥ RQ and PI ⊥ PL (because PRQL is a parallelogram). Extend PI through I to

meet RQ at D. Then 2[PQR] = RQ · PD and 2[LIP ] = PI · PL = PI ·RQ. Hence the problem is equivalent
to determining the maximum value of PD/PI.

Set m∠RPD = m∠RPI = α and m∠IPX = β, and note that PD = PR cosα = 5 cosα and PI = PX/cosβ =
3/cosβ. It follows that

PD

PI
=

5 cosα cosβ

3
=

5
(
cos(α+ β) + cos(α− β)

)
6

≤ 5(3/5 + 1)

6
=

4

3
,

with equality when α = β.

A R

ML

P
Q X

I
D

Problem 9. Given that a, b, c, and d are positive integers such that

a! · b! · c! = d! and a+ b+ c+ d = 37,

compute the product abcd.

Solution 9. Without loss of generality, assume a ≤ b ≤ c < d. Note that d cannot be prime, as none of a!, b!, or
c! would have it as a factor. If d = p + 1 for some prime p, then c = p and a!b! = p + 1. The least possible
values of a!b! are 1, 2, 4, 6, 24, 36, 48, 120, 144, 240, so the case where d = p + 1 is impossible. If d ≥ 21, then

a + b + c ≤ 16 and it is impossible to find values of a and b such that a! · b! =
d!

c!
. If d = 16, either a!b! = 16

or a!b! = 16 · 15 or a!b! = 16 · 15 · 14. Comparing to the list above, the only possible value a!b! on the list is
16 · 15 = 240 and so (a, b, c, d) = (2, 5, 14, 16) and abcd = 2240.

Problem 10. Compute the value of

sin(6◦) · sin(12◦) · sin(24◦) · sin(42◦) + sin(12◦) · sin(24◦) · sin(42◦).

Solution 10. Let S = (1+sin 6◦)(sin 12◦ sin 24◦ sin 42◦). It follows from a sum-to-product identity that 1+sin 6◦ =
sin 90◦ + sin 6◦ = 2 sin 48◦ cos 42◦. Because the sine of an angle is the cosine of its complement, it follows that

S = (2 sin 48◦ cos 42◦)(sin 12◦ sin 24◦ sin 42◦) = 2(sin 48◦)2(sin 12◦ sin 24◦ cos 48◦).

By the double-angle formula, this means S = sin 12◦ sin 24◦ sin 48◦ sin 96◦. By a product-to-sum identity,

sin 12◦ sin 48◦ =
cos 36◦ − cos 60◦

2
=

√
5− 1

8
(1)
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and

sin 24◦ sin 96◦ =
cos 72◦ − cos 120◦

2
=

√
5 + 1

8
. (2)

Multiply the expressions on the right-hand sides of (1) and (2) to obtain
1

16
.
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9 Relay Problems

Relay 1-1. Let a = 19, b = 20, and c = 21. Compute

a2 + b2 + c2 + 2ab+ 2bc+ 2ca

a+ b+ c
.

Relay 1-2. Let T = TNYWR. Lydia is a professional swimmer and can swim one-fifth of a lap of a pool in an
impressive 20.19 seconds, and she swims at a constant rate. Rounded to the nearest integer, compute the
number of minutes required for Lydia to swim T laps.

Relay 1-3. Let T = TNYWR. In 4ABC, m∠C = 90◦ and AC = BC =
√
T − 3. Circles O and P each have

radius r and lie inside 4ABC. Circle O is tangent to AC and BC. Circle P is externally tangent to circle O
and to AB. Given that points C, O, and P are collinear, compute r.

Relay 2-1. Given that p = 6.6× 10−27, then
√
p = a× 10b, where 1 ≤ a < 10 and b is an integer. Compute 10a+ b

rounded to the nearest integer.

Relay 2-2. Let T = TNYWR. A group of children and adults go to a rodeo. A child’s admission ticket costs $5,
and an adult’s admission ticket costs more than $5. The total admission cost for the group is $10 · T . If the
number of adults in the group were to increase by 20%, then the total cost would increase by 10%. Compute
the number of children in the group.

Relay 2-3. Let T = TNYWR. Rectangles FAKE and FUNK lie in the same plane. Given that EF = T ,
AF = 4T

3 , and UF = 12
5 , compute the area of the intersection of the two rectangles.
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10 Relay Answers

Answer 1-1. 60

Answer 1-2. 101

Answer 1-3. 3−
√
2

Answer 2-1. 67

Answer 2-2. 67

Answer 2-3. 262
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11 Relay Solutions

Relay 1-1. Let a = 19, b = 20, and c = 21. Compute

a2 + b2 + c2 + 2ab+ 2bc+ 2ca

a+ b+ c
.

Solution 1-1. Note that the numerator of the given expression factors as (a + b + c)2, hence the expression to be
computed equals a+ b+ c = 19 + 20 + 21 = 60.

Relay 1-2. Let T = TNYWR. Lydia is a professional swimmer and can swim one-fifth of a lap of a pool in an
impressive 20.19 seconds, and she swims at a constant rate. Rounded to the nearest integer, compute the
number of minutes required for Lydia to swim T laps.

Solution 1-2. Lydia swims a lap in 5 · 20.19 = 100.95 seconds. The number of minutes required for Lydia to
swim T laps is therefore 100.95 · T/60. With T = 60, the desired number of minutes, rounded to the nearest
integer, is 101.

Relay 1-3. Let T = TNYWR. In 4ABC, m∠C = 90◦ and AC = BC =
√
T − 3. Circles O and P each have

radius r and lie inside 4ABC. Circle O is tangent to AC and BC. Circle P is externally tangent to circle O
and to AB. Given that points C, O, and P are collinear, compute r.

Solution 1-3. Let A′ and B′ be the respective feet of the perpendiculars from O to AC and BC. Let H be
the foot of the altitude from C to AB. Because 4ABC is isosceles, it follows that A′OB′C is a square,
m∠B′CO = 45◦, and m∠BCH = 45◦. Hence H lies on the same line as C, O, and P . In terms of r, the
length CH is CO + OP + PH = r

√
2 + 2r + r = (3 +

√
2)r. Because AC = BC =

√
T − 3, it follows that

CH =

√
T − 3√
2

. Thus r =

√
T − 3√

2(3 +
√
2)

=
(3
√
2− 2)

√
T − 3

14
. With T = 101,

√
T − 3 =

√
98 = 7

√
2, and it

follows that r = 3−
√
2.

Relay 2-1. Given that p = 6.6× 10−27, then
√
p = a× 10b, where 1 ≤ a < 10 and b is an integer. Compute 10a+ b

rounded to the nearest integer.

Solution 2-1. Note that p = 6.6 × 10−27 = 66 × 10−28, so a =
√

66 and b = −14. Note that
√

66 >
√

64 = 8.
Because 8.12 = 65.61 and 8.152 = 66.4225 > 66, conclude that 81 < 10

√
66 < 81.5, hence 10a rounded to the

nearest integer is 81, and the answer is 81− 14 = 67.

Relay 2-2. Let T = TNYWR. A group of children and adults go to a rodeo. A child’s admission ticket costs $5,
and an adult’s admission ticket costs more than $5. The total admission cost for the group is $10 · T . If the
number of adults in the group were to increase by 20%, then the total cost would increase by 10%. Compute
the number of children in the group.

Solution 2-2. Suppose there are x children and y adults in the group and each adult’s admission ticket costs $a.
The given information implies that 5x+ ay = 10T and 5x+ 1.2ay = 11T . Subtracting the first equation from
the second yields 0.2ay = T → ay = 5T , so from the first equation, 5x = 5T → x = T . With T = 67, the
answer is 67.
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Relay 2-3. Let T = TNYWR. Rectangles FAKE and FUNK lie in the same plane. Given that EF = T ,
AF = 4T

3 , and UF = 12
5 , compute the area of the intersection of the two rectangles.

Solution 2-3. Without loss of generality, let A, U , and N lie on the same side of FK. Applying the Pythagorean
Theorem to triangle AFK, conclude that FK = 5T

3 . Comparing the altitude to FK in triangle AFK to UF ,

note that the intersection of the two rectangles will be a triangle with area 2T 2

3 if 4T
5 ≤ 12

5 , or T ≤ 3. Otherwise,
the intersection will be a trapezoid. In this case, using similarity, the triangular regions of FUNK that lie
outside of FAKE each have one leg of length 12

5 and the others of lengths 16
5 and 9

5 , respectively. Thus their

combined areas 1
2 · 125 ( 16

5 + 9
5 ) = 6, hence the area of the intersection is 5T

3 · 125 − 6 = 4T − 6. With T = 67, the

answer is therefore 262.
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12 Super Relay

1. Given that a, b, c, and d are integers such that a + bc = 20 and −a + cd = 19, compute the greatest possible
value of c.

2. Let T = TNYWR. Emile randomly chooses a set of T cards from a standard deck of 52 cards. Given that
Emile’s set contains no clubs, compute the probability that his set contains three aces.

3. Let T = TNYWR. In parallelogram ABCD,
AB

BC
= T . Given that M is the midpoint of AB and P and Q are

the trisection points of CD, compute
[ABCD]

[MPQ]
.

4. Let T = TNYWR. Compute the value of x such that logT

√
x− 7 + logT 2(x− 2) = 1.

5. Let T = TNYWR. Let p be an odd prime and let x, y, and z be positive integers less than p. When the
trinomial (px+ y+ z)T−1 is expanded and simplified, there are N terms, of which M are always multiples of p.
Compute M .

6. Let T = TNYWR. Compute the value of K such that 20, T − 5, K is an increasing geometric sequence
and 19, K, 4T + 11 is an increasing arithmetic sequence.

7. Let T = TNYWR. Cube C1 has volume T and sphere S1 is circumscribed about C1. For n ≥ 1, the sphere Sn
is circumscribed about the cube Cn and is inscribed in the cube Cn+1. Let k be the least integer such that the
volume of Ck is at least 2019. Compute the edge length of Ck.

15. Square KENT has side length 20. Point M lies in the interior of KENT such that 4MEN is equilateral.
Given that KM2 = a− b

√
3, where a and b are integers, compute b.

14. Let T = TNYWR. Let a, b, and c be the three solutions of the equation x3 − 20x2 + 19x + T = 0. Compute
a2 + b2 + c2.

13. Let T = TNYWR and let K =
√
T − 1. Compute

∣∣(K − 20)(K + 1) + 19K −K2
∣∣.

12. Let T = TNYWR. In 4LEO, sin∠LEO =
1

T
. If LE =

1

n
for some positive real number n, then EO =

n3 − 4n2 + 5n. As n ranges over the positive reals, compute the least possible value of [LEO].

11. Let T = TNYWR. Given that x, y, and z are real numbers such that x+ y = 5, x2− y2 =
1

T
, and x− z = −7,

compute x+ z.

10. Let T = TNYWR. The product of all positive divisors of 2T can be written in the form 2K . Compute K.

9. Let T = TNYWR. At the Westward House of Supper (“WHS”), a dinner special consists of an appetizer, an
entrée, and dessert. There are 7 different appetizers and K different entrées that a guest could order. There
are 2 dessert choices, but ordering dessert is optional. Given that there are T possible different orders that
could be placed at the WHS, compute K.

8. Let S be the number you will receive from position 7 and let M be the number you will receive from position 9.
Sam and Marty each ride a bicycle at a constant speed. Sam’s speed is S km/hr and Marty’s speed is M km/hr.
Given that Sam and Marty are initially 100 km apart and they begin riding towards one another at the same
time, along a straight path, compute the number of kilometers that Sam will have traveled when Sam and
Marty meet.
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13 Super Relay Answers

1. 39

2. 1

3. 6

4. 11

5. 55

6. 125

7. 15

15. 400

14. 362

13. 20

12.
1

40

11. 20

10. 210

9. 10

8. 60
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14 Super Relay Solutions

Problem 1. Given that a, b, c, and d are integers such that a+ bc = 20 and −a+ cd = 19, compute the greatest
possible value of c.

Solution 1. Adding the two given equations yields bc + cd = c(b + d) = 39. The greatest possible value of c
therefore occurs when c = 39 and b+ d = 1.

Problem 2. Let T = TNYWR. Emile randomly chooses a set of T cards from a standard deck of 52 cards. Given
that Emile’s set contains no clubs, compute the probability that his set contains three aces.

Solution 2. Knowing that 13 of the cards are not in Emile’s set, there are
(
39
T

)
ways for him to have chosen a

set of T cards. Given that Emile’s set contains no clubs, the suits of the three aces are fixed (i.e., diamonds,
hearts, and spades). The number of possible sets of cards in which these three aces appear is therefore

(
36

T−3
)
.

The desired probability is therefore
(

36
T−3

)
/
(
39
T

)
. With T = 39, this probability is 1/1 = 1, which is consistent

with the fact that Emile’s set contains all cards in the deck that are not clubs, hence he is guaranteed to have
all three of the remaining aces.

Problem 3. Let T = TNYWR. In parallelogram ABCD,
AB

BC
= T . Given that M is the midpoint of AB and P

and Q are the trisection points of CD, compute
[ABCD]

[MPQ]
.

Solution 3. Let CD = 3x and let h be the length of the altitude between bases AB and CD. Then [ABCD] = 3xh

and [MPQ] = 1
2xh. Hence

[ABCD]

[MPQ]
= 6. Both the position of M and the ratio

AB

BC
= T are irrelevant.

Problem 4. Let T = TNYWR. Compute the value of x such that logT

√
x− 7 + logT 2(x− 2) = 1.

Solution 4. It can readily be shown that loga b = loga2 b2. Thus it follows that logT

√
x− 7 = logT 2(x−7). Hence

the left-hand side of the given equation is logT 2(x−7)(x−2) and the equation is equivalent to (x−7)(x−2) = T 2,
which is equivalent to x2−9x+14−T 2 = 0. With T = 6, this equation is x2−9x−22 = 0 =⇒ (x−11)(x+2) = 0.
Plugging x = −2 into the given equation leads to the first term of the left-hand side having a negative radicand
and the second term having an argument of 0. However, one can easily check that x = 11 indeed satisfies the
given equation.

Problem 5. Let T = TNYWR. Let p be an odd prime and let x, y, and z be positive integers less than p. When
the trinomial (px+ y + z)T−1 is expanded and simplified, there are N terms, of which M are always multiples
of p. Compute M .

Solution 5. A general term in the expansion of (px+ y + z)T−1 has the form K(px)aybzc, where a, b, and c are
nonnegative integers such that a+b+c = T−1. Using the “stars and bars” approach, the number of nonnegative
integral solutions to a + b + c = T − 1 is the number of arrangements of T − 1 stars and 2 bars in a row (the
bars act has separators and the “2” arises because it is one less than the number of variables in the equation).
Thus there are

(
T+1
2

)
solutions. Each term will be a multiple of p unless a = 0. In this case, the number of

terms that are not multiples of p is the number of nonnegative integral solutions to the equation b+ c = T − 1,

which is T (b can range from 0 to T − 1 inclusive, and then c is fixed). Hence M =
(
T+1
2

)
− T = T 2−T

2 . With
T = 11, the answer is 55.
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Problem 6. Let T = TNYWR. Compute the value of K such that 20, T − 5, K is an increasing geometric
sequence and 19, K, 4T + 11 is an increasing arithmetic sequence.

Solution 6. The condition that 20, T − 5, K is an increasing geometric sequence implies that T−5
20 = K

T−5 ,

hence K = (T−5)2
20 . The condition that 19, K, 4T + 11 is an increasing arithmetic sequence implies that

K − 19 = 4T + 11 − K, hence K = 2T + 15. With T = 55, each of these equations implies that K = 125.
Note that the two equations can be combined and solved without being passed a value of T . A quadratic
equation results, and its roots are T = 55 or T = −5. However, with T = −5, neither of the given sequences is
increasing.

Problem 7. Let T = TNYWR. Cube C1 has volume T and sphere S1 is circumscribed about C1. For n ≥ 1, the
sphere Sn is circumscribed about the cube Cn and is inscribed in the cube Cn+1. Let k be the least integer such
that the volume of Ck is at least 2019. Compute the edge length of Ck.

Solution 7. In general, let cube Cn have edge length x. Then the diameter of sphere Sn is the space diagonal of Cn,
which has length x

√
3. This in turn is the edge length of cube Cn+1. Hence the edge lengths of C1, C2, . . . form

an increasing geometric sequence with common ratio
√

3 and volumes of C1, C2, . . . form an increasing geometric
sequence with common ratio 3

√
3. With T = 125, the edge length of C1 is 5, so the sequence of edge lengths

of the cubes is 5, 5
√

3, 15, . . ., and the respective sequence of the volumes of the cubes is 125, 375
√

3, 3375, . . . .
Hence k = 3, and the edge length of C3 is 15.

Problem 15. Square KENT has side length 20. Point M lies in the interior of KENT such that 4MEN is
equilateral. Given that KM2 = a− b

√
3, where a and b are integers, compute b.

Solution 15. Let s be the side length of square KENT ; then ME = s. Let J be the foot of the altitude from M to

KE. Then m∠JEM = 30◦ and m∠EMJ = 60◦. Hence MJ = s
2 , JE = s

√
3

2 , and KJ = KE − JE = s− s
√
3

2 .

Applying the Pythagorean Theorem to 4KJM implies that KM2 =
Ä
s− s

√
3

2

ä2
+
(
s
2

)2
= 2s2 − s2

√
3. With

s = 20, the value of b is therefore s2 = 400.

Problem 14. Let T = TNYWR. Let a, b, and c be the three solutions of the equation x3 − 20x2 + 19x+ T = 0.
Compute a2 + b2 + c2.

Solution 14. According to Vieta’s formulas, a + b + c = −(−20) = 20 and ab + bc + ca = 19. Noting that
a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ca), it follows that a2 + b2 + c2 = 202 − 2 · 19 = 362. The value of T is
irrelevant.

Problem 13. Let T = TNYWR and let K =
√
T − 1. Compute

∣∣(K − 20)(K + 1) + 19K −K2
∣∣.

Solution 13. The expression inside the absolute value bars simplifies to K2−19K−20+19K−K2 = −20. Hence
the answer is 20 and the value of K (=

√
361 = 19) is not needed.

Problem 12. Let T = TNYWR. In 4LEO, sin∠LEO =
1

T
. If LE =

1

n
for some positive real number n, then

EO = n3 − 4n2 + 5n. As n ranges over the positive reals, compute the least possible value of [LEO].

Solution 12. Note that [LEO] = 1
2 (sin∠LEO) · LE · EO = 1

2 · 1
T · 1n · (n3 − 4n2 + 5n) = n2−4n+5

2T . Because T is
a constant, the least possible value of [LEO] is achieved when the function f(n) = n2 − 4n + 5 is minimized.
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This occurs when n = −(−4)/(2 · 1) = 2, and the minimum value is f(2) = 1. Hence the desired least possible
value of [LEO] is 1

2T , and with T = 20, this is 1
40 .

Problem 11. Let T = TNYWR. Given that x, y, and z are real numbers such that x+ y = 5, x2 − y2 =
1

T
, and

x− z = −7, compute x+ z.

Solution 11. Note that x2−y2 = (x+y)(x−y) = 5(x−y), hence x−y = 1
5T . Then x+z = (x+y)+(x−y)+(z−x) =

5 + 1
5T + 7 = 12 + 1

5T . With T = 1
40 , the answer is thus 12 + 8 = 20.

Problem 10. Let T = TNYWR. The product of all positive divisors of 2T can be written in the form 2K .
Compute K.

Solution 10. When n is a nonnegative integer, the product of the positive divisors of 2n is 20 · 21 · . . . · 2n−1 · 2n =

20+1+···+(n−1)+n = 2n(n+1)/2. Because T = 20 is an integer, it follows that K = T (T+1)
2 = 210.

Problem 9. Let T = TNYWR. At the Westward House of Supper (“WHS”), a dinner special consists of an
appetizer, an entrée, and dessert. There are 7 different appetizers and K different entrées that a guest could
order. There are 2 dessert choices, but ordering dessert is optional. Given that there are T possible different
orders that could be placed at the WHS, compute K.

Solution 9. Because dessert is optional, there are effectively 2+1 = 3 dessert choices. Hence, by the Multiplication
Principle, it follows that T = 7 ·K · 3, thus K = T

21 . With T = 210, the answer is 10.

Problem 8. Let S be the number you will receive from position 7 and let M be the number you will receive from
position 9. Sam and Marty each ride a bicycle at a constant speed. Sam’s speed is S km/hr and Marty’s speed
is M km/hr. Given that Sam and Marty are initially 100 km apart and they begin riding towards one another
at the same time, along a straight path, compute the number of kilometers that Sam will have traveled when
Sam and Marty meet.

Solution 8. In km/hr, the combined speed of Sam and Marty is S +M . Thus one can determine the total time
they traveled and use this to determine the number of kilometers that Sam traveled. However, this is not
needed, and there is a simpler approach. Suppose that Marty traveled a distance of d. Then because Sam’s
speed is S

M of Marty’s speed, Sam will have traveled a distance of S
M ·d. Thus, together, they traveled d+ S

M ·d.

Setting this equal to 100 and solving yields d = 100M
M+S . Thus Sam traveled S

M · d = 100S
M+S . With S = 15 and

M = 10, this is equal to 60 km.
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15 Tiebreaker Problems

Problem 1. Regular tetrahedra JANE, JOHN , and JOAN have non-overlapping interiors. Compute tan∠HAE.

Problem 2. Each positive integer less than or equal to 2019 is written on a blank sheet of paper, and each of
the digits 0 and 5 is erased. Compute the remainder when the product of the remaining digits on the sheet of
paper is divided by 1000.

Problem 3. Compute the third least positive integer n such that each of n, n+1, and n+2 is a product of exactly
two (not necessarily distinct) primes.
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16 Tiebreaker Answers

Answer 1.
5
√
2

2

Answer 2. 976

Answer 3. 93
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17 Tiebreaker Solutions

Problem 1. Regular tetrahedra JANE, JOHN , and JOAN have non-overlapping interiors. Compute tan∠HAE.

Solution 1. First note that JN is a shared edge of all three pyramids, and that the viewpoint for the figure below
is from along the line that is the extension of edge JN .

Let h denote the height of each pyramid. Let X be the center of pyramid JOAN , and consider the plane
passing through H, A, and E. By symmetry, the altitude in pyramid JOHN through H and the altitude in
pyramid JANE through E pass through X. Thus points H, X, and A are collinear, as are points E, X, and
O. Hence AH = OE = 2h. Using the result that the four medians in a tetrahedron are concurrent and divide
each other in a 3 : 1 ratio, it follows that AX = OX = 3h

4 and XE = OE − OX = 5h
4 . Applying the Law of

Cosines to triangle AXE yields cos∠XAE = cos∠HAE = 2−2h2

3h . Suppose, without loss of generality, that

the common side length of the pyramids is 1. Then h =
»

2
3 and cos∠HAE =

√
6
9 . Hence sin∠HAE =

√
75
9

and therefore tan∠HAE =
5
√
2

2
.

Problem 2. Each positive integer less than or equal to 2019 is written on a blank sheet of paper, and each of
the digits 0 and 5 is erased. Compute the remainder when the product of the remaining digits on the sheet of
paper is divided by 1000.

Solution 2. Count the digits separately by position, noting that 1 is irrelevant to the product. There are a total of
20 instances of the digit 2 in the thousands place. The digit 0 only occurs in the hundreds place if the thousands
digit is 2, so look at the numbers 1 through 1999. Each non-zero digit contributes an equal number of times, so
there are 200 each of 1, 2, 3, 4, 6, 7, 8, 9. The same applies to the tens digit, except there can be the stray digit
of 1 among the numbers 2010 through 2019, but again, these do not affect the product. In the units place, there
are 202 of each of the digits. Altogether, there are 602 each of 2, 3, 4, 6, 7, 8, 9, along with 20 extra instances of
the digit 2. Note that 9 ·8 ·7 ·6 ·4 ·3 ·2 = 3024 ·24 = 72,576 leaves a remainder of 576 when divided by 1000. Also
220 = 10242 ≡ 242 (mod 1000), so 220 contributes another factor of 576. The answer is therefore the remainder
when 576603 is divided by 1000. This computation can be simplified by using the Chinese Remainder Theorem
with moduli 8 and 125, whose product is 1000. Note 576603 ≡ 0 (mod 8) because 576 is divisible by 8. Also
576 ≡ 76 (mod 125). By Euler’s totient theorem, 576100 ≡ 1 (mod 125), so 576603 ≡ 763 (mod 125). This can
quickly be computed by noting that 763 = (75 + 1)3 = 753 + 3 · 752 + 3 · 75 + 1 ≡ 3 · 75 + 1 ≡ −24 (mod 125).
Observing that −24 ≡ 0 (mod 8), it follows that 576603 ≡ −24 (mod 1000), hence the desired remainder is 976.
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Problem 3. Compute the third least positive integer n such that each of n, n+1, and n+2 is a product of exactly
two (not necessarily distinct) primes.

Solution 3. Define a positive integer n to be a semiprime if it is a product of exactly two (not necessarily distinct)
primes. Define a lucky trio to be a sequence of three consecutive integers, n, n + 1, n + 2, each of which is a
semiprime. Note that a lucky trio must contain exactly one multiple of 3. Also note that the middle number
in a lucky trio must be even. To see this, note that if the first and last numbers in a lucky trio were both even,
then exactly one of these numbers would be a multiple of 4. But neither 2, 3, 4 nor 4, 5, 6 is a lucky trio, and
if a list of three consecutive integers contains a multiple of 4 that is greater than 4, this number cannot be a
semiprime. Using this conclusion and because 3, 4, 5 is not a lucky trio, it follows that the middle number of a
lucky trio cannot be a multiple of 4. Hence it is necessary that a lucky trio has the form 4k+ 1, 4k+ 2, 4k+ 3,
for some positive integer k, with 2k + 1 being a prime. Note that k 6≡ 1 (mod 3) because when k = 1, the
sequence 5, 6, 7 is not a lucky trio, and when k > 1, 4k + 2 would be a multiple of 6 greater than 6, hence
it cannot be a semiprime. Trying k = 2, 3, 5, 6, 8, 9, . . . allows one to eliminate sequences of three consecutive
integers that are not lucky trios, and if lucky trios are ordered by their least elements, one finds that the first
three lucky trios are 33, 34, 35; 85, 86, 87; and 93, 94, 95. Hence the answer is 93.
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