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1 Team Problems

Problem 1. Compute the number of non-empty subsets S of {1, 2, 3, . . . , 20} for which |S| ·max{S} = 18. (Note:
|S| is the number of elements of the set S.)

Problem 2. A class of 218 students takes a test. Each student’s score is an integer from 0 to 100, inclusive.
Compute the greatest possible difference between the mean and the median scores.

Problem 3. Regular hexagon RANGES has side length 6. Pentagon RANGE is revolved 360◦ about the line
containing RE to obtain a solid. The volume of the solid is k · π. Compute k.

Problem 4. A fair 12-sided die has faces numbered 1 through 12. The die is rolled twice, and the results of the
two rolls are x and y, respectively. Given that tan(2θ) = x

y for some θ with 0 < θ < π
2 , compute the probability

that tan θ is rational.

Problem 5. The absolute values of the five complex roots of z5−5z2 + 53 = 0 all lie between the positive integers
a and b, where a < b and b− a is minimal. Compute the ordered pair (a, b).

Problem 6. Let S be the set of points (x, y) whose coordinates satisfy the system of equations:

bxc · dye = 20

dxe · byc = 18.

Compute the least upper bound of the set of distances between points in S.

Problem 7. Compute the least integer d > 0 for which there exist distinct lattice points A, B, and C in the
coordinate plane, each exactly

√
d units from the origin, satisfying csc(∠ABC) > 2018.

Problem 8. Compute the number of unordered collections of three integer-area rectangles such that the three
rectangles can be assembled without overlap to form one 3 × 5 rectangle. (For example, one such collection
contains one 3 × 3 and two 1 × 3 rectangles, and another such collection contains one 3 × 3 and two 2 × 1.5
rectangles. The latter collection is equivalent to the collection of two 1.5×2 rectangles and one 3×3 rectangle.)

Problem 9. Let Γ be a circle with diameter XY and center O, and let γ be a circle with diameter OY . Circle
ω1 passes through Y and intersects Γ and γ again at A and B, respectively. Circle ω2 also passes through Y
and intersects Γ and γ again at D and C, respectively. Given that AB = 1, BC = 4, CD = 2, and AD = 7,
compute the sum of the areas of ω1 and ω2.

Problem 10. In the number puzzle below, clues are given for the four rows, each of which contains a four-digit
number. Cells inside a region bounded by bold lines must all contain the same digit, and each of the eight
regions contains a different digit. The variables in the clues are all positive integers. Complete the number
puzzle.

1: 4a + 13b + 14c

2: 5p + 13q + 17r

3: 4x + 5y + 31z

4: the average of the other 3 rows
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2 Answers to Team Problems

Answer 1. 19

Answer 2.
5400

109

Ñ
or 49

59

109

é
Answer 3. 342

√
3

Answer 4.
1

18
(or 0.05)

Answer 5. (2, 3)

Answer 6. 2
√
73

Answer 7. 2,038,181

Answer 8. 132

Answer 9. 20π

Answer 10.

5 1 9 7

5 1 0 7

4 1 0 2

4 8 0 2
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3 Solutions to Team Problems

Problem 1. Compute the number of non-empty subsets S of {1, 2, 3, . . . , 20} for which |S| ·max{S} = 18. (Note:
|S| is the number of elements of the set S.)

Solution 1. Both |S| and max{S} are integers between 1 and 20, so factor 18 and consider the possible ways to
have |S| and max{S} equal each factor. Then count the number of possible sets S that satisfy that condition.

|S| max{S} Number of possible sets S

1 18 1: this can only be the set S = {18}.
2 9 8: this can be any set S = {a, 9}, where 1 ≤ a ≤ 8.

3 6
(
5
2

)
= 10: the greatest element must be 6, and there are

(
5
2

)
ways of selecting the

two other elements of S.

6 3 0: this is impossible because S cannot have 6 elements, the greatest of which is 3.

9 2 0: this is impossible because S cannot have 9 elements, the greatest of which is 2.

18 1 0: this is impossible because S cannot have 18 elements, the greatest of which is 1.

Thus the answer is 1 + 8 + 10 = 19.

Problem 2. A class of 218 students takes a test. Each student’s score is an integer from 0 to 100, inclusive.
Compute the greatest possible difference between the mean and the median scores.

Solution 2. Intuitively, the maximum difference can be attained by forcing the median to be 0 by selecting just
enough 0 scores, and then maximizing the mean by maximizing the remaining scores. Such a distribution would
have 110 scores of 0 and 108 scores of 100, giving a median score of 0 and a mean score of 108·100

218 = 5400
109 . This

gives a difference of 5400
109 .

To prove that this is maximal, assume that the median score is m. Then, by definition, at least 109 scores
must be at most m. Further, the remaining 109 scores are at most 100, so the mean µ satisfies µ ≤
1

218 (109m+ 10900) = m+100
2 . Therefore µ−m ≤ 100−m

2 .

If m = 0, then the maximum mean is found as above. If m ≥ 1, then µ − m ≤ 100−1
2 = 49.5 < 5400

109 ,
and the difference is greater than it is in the above case with m = 0. There only remains the possibility that
m = 1

2 . For this to be the case, 109 scores must be 0 and one score must be 1. To maximize the mean, the
remaining 108 scores must be 100. However, compared to the case of having 110 scores of 0 and 108 of 100,
this increases the median by 1

2 but increases the mean by only 1218, so the difference will certainly be smaller.
Thus the answer is 5400

109 .

Problem 3. Regular hexagon RANGES has side length 6. Pentagon RANGE is revolved 360◦ about the line
containing RE to obtain a solid. The volume of the solid is k · π. Compute k.

Solution 3. First note that because RA and EG are parallel, the solid obtained will consist of two conic frustums,
each with a base along the plane through NS and perpendicular to ER. It is easier to compute the volume

of one of these conic frustums at a time. Let O be the midpoint of ER, and let
−−→
NA and

−−→
ER intersect at P .

Then the conic frustum is a cone with radius ON and height OP , cut off by the plane containing AR and
perpendicular to ER.
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Note that ON = NS −OS = 12− 3 = 9, and OP = OR+RP = 3
√

3 + 6
√
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√

3. Then the volume of one
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1

3
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(
92
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9
√

3
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− 1

3
π
(
62
) Ä

6
√

3
ä

= 171
√

3π.

The volume of the entire solid is therefore 342
√

3 · π, so k = 342
√

3.

Problem 4. A fair 12-sided die has faces numbered 1 through 12. The die is rolled twice, and the results of the
two rolls are x and y, respectively. Given that tan(2θ) = x

y for some θ with 0 < θ < π
2 , compute the probability

that tan θ is rational.

Solution 4. Suppose tan 2θ = x
y . Then the identity for the tangent of a sum gives 2 tan θ

1−tan2 θ = x
y , which is equivalent

to x−x tan2 θ = 2y tan θ. Rearranging gives a quadratic equation in tan θ: x tan2 θ+2y tan θ−x = 0. Thus tan θ
is rational if and only if the discriminant is a perfect square. The discriminant is (2y)2−4 ·x ·(−x) = 4(x2+y2),
which is a perfect square if and only if x2 + y2 is a perfect square. The only Pythagorean triples (a, b, c) with
a, b ≤ 12 are (3, 4, 5), (6, 8, 10), (9, 12, 15), and (5, 12, 13). Therefore the only (x, y) that give a rational value for
tan θ are (3, 4), (4, 3), (6, 8), (8, 6), (9, 12), (12, 9), (5, 12), (12, 5). The desired probability is therefore 8

12·12 = 1
18 .

Problem 5. The absolute values of the five complex roots of z5−5z2 + 53 = 0 all lie between the positive integers
a and b, where a < b and b− a is minimal. Compute the ordered pair (a, b).

Solution 5. First note that the question asks for the tightest possible integer bounds on the magnitude of a zero
of the complex polynomial z5− 5z2 + 53, essentially describing the smallest complex annulus with integer radii
that contains the roots.

Now recall two important properties of the absolute value function: |ab| = |a||b| and |a + b| ≤ |a| + |b| for
all complex numbers a and b. The latter also implies that |a|− |b| ≤ |a− b|. In order to have z5− 5z2 + 53 = 0,
it must be the case that |z5 − 5z2| = 53. This is enough to restrict the possible magnitude of z.

Suppose that |z| > 3. Then |z5 − 5z2| = |z|2|z3 − 5| > 9|z3 − 5| ≥ 9(|z|3 − 5) > 9(27 − 5) = 198 > 53.
So |z| ≤ 3.

Suppose that |z| < 2. Then |z5 − 5z2| = |z|2|z3 − 5| < 4|z3 − 5| ≤ 4(|z|3 + |5|) < 4(8 + 5) = 51 < 53.
So |z| ≥ 2.

Therefore 2 ≤ |z| ≤ 3 for all roots z of z5 − 5z2 + 53. Because a < b, and a and b are integers, b − a is
at least 1, so this is the best possible bound. The answer is (2, 3).
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Problem 6. Let S be the set of points (x, y) whose coordinates satisfy the system of equations:

bxc · dye = 20

dxe · byc = 18.

Compute the least upper bound of the set of distances between points in S.

Solution 6. First note that x and y cannot both be integers because otherwise, the given system would be incon-
sistent. Now suppose that exactly one of x or y is an integer. If x is an integer and byc = b, then dye = b+ 1,
and multiplying the two given equations and simplifying results in the equation x2 · b(b+ 1) = 360 (†). Because
1 ≤ x2 < 360, the only possible values of x2 are the perfect square factors of 360, namely 1, 4, 9, and 36.
Substituting in x2 = 1, 9, and 36 into (†) results in non-integral solutions for b. But substituting x2 = 4 into
(†) results in b2 + b − 90 = (b + 10)(b − 9) = 0, and b = −10 or b = 9. If x = 2, then byc = 9 and dye = 10,
and this yields the solutions (2, y), where 9 < y < 10. On the other hand, if x = −2, then byc = −9 and
dye = −10, which is impossible. By a similar argument, if x is not an integer and y is an integer, this results in
the solutions (x,−2), where −10 < x < −9. Thus if I1 is the open interval (9, 10) and I2 is the open interval
(−10,−9), then the solutions (x, y) to the given system where exactly one of x and y is an integer are the
ordered pairs belonging to the union of the two sets {2} × I1∗ and I2 × {−2}. Graphically, these represent
segments of unit length (one vertical, one horizontal) that do not include the endpoints. For later reference,
let Ix = I2 × {−2} and let Iy = {2} × I1.

Now suppose that neither x nor y is an integer and that bxc = a and byc = b. Then dxe = a+ 1, dye = b+ 1,
and multiplying the two given equations and simplifying results in the equation a(a+ 1)b(b+ 1) = 360 (‡). By
noting the factorization 360 = 3 · 4 · 5 · 6, the following ordered pairs (a, b) satisfy (‡):

(3, 5); (−4, 5); (−4,−6); (3,−6); (5, 3); (5,−4); (−6,−4); (−6, 3).

However, only (a, b) = (5, 3) and (−4,−6) satisfy the given system:

a(b+ 1) = 20

(a+ 1)b = 18.

Let I3 and I4 denote the open intervals (5, 6) and (3, 4), respectively and let I5 and I6 denote the open intervals
(−4,−3) and (−6,−5), respectively. Then the solutions (x, y) to the given system in which neither x nor y is
an integer are given by the union of the two regions R1 and R2, defined by

R1 = I3 × I4 and R2 = I5 × I6.

Each of R1 and R2 is the interior of a unit square (R1 lies in the first quadrant and R2 lies in the third
quadrant). Also note that the solutions are symmetric about the line y = −x. A plot of the points of S is
shown.

∗Here, × denotes the Cartesian product. I.e., if P and Q are two sets, then P ×Q = {(p, q) | p ∈ P and q ∈ Q}.
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The answer to the problem is max{`1, `2, `3}, where:

• `1 is the least upper bound of the distances between a point in Ix and a point in Iy;

• `2 is the least upper bound of the distances between a point in R1 and a point in R2;

• `3 is the least upper bound of the distances between a point in Ix ∪ Iy and a point in R1 ∪R2.

Compute `1 by taking the distance between the extremal boundary points of Ix and Iy, namely (−10,−2) and

(2, 10), respectively. This distance is
√

2 · 122 =
√

288.

Compute `2 by taking the distance between the extremal boundary points of R1 and R2, namely (6, 4) and

(−4,−6), respectively. This distance is
√

2 · 102 =
√

200.

Compute `3 by taking the distance between the extremal boundary points of Ix and R1 (or of Iy and R2,
owing to the symmetry), namely (−10,−2) and (6, 4), respectively. This distance is

√
162 + 62 =

√
292.

Thus the answer is max{
√

288,
√

200,
√

292} =
√

292 = 2
√

73.

Problem 7. Compute the least integer d > 0 for which there exist distinct lattice points A, B, and C in the
coordinate plane, each exactly

√
d units from the origin, satisfying csc(∠ABC) > 2018.

Solution 7. The points A, B, and C lie on a circle with diameter 2
√
d. Consequently, by the Extended Law of

Sines,

2
√
d =

AC

sin(∠ABC)
→ csc(∠ABC) =

2
√
d

AC
.
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The solution now proceeds in three cases.

• It is impossible that AC = 1. Indeed, if A = (x, y), then without loss of generality, assume C = (x+ 1, y).
Then d = x2 + y2 = (x+ 1)2 + y2, which implies 2x+ 1 = 0, contradiction.

• Suppose AC =
√

2. If A = (x, y), then without loss of generality, assume C = (x+ 1, y + 1), by reflecting
or rotating as necessary. Then d = x2 + y2 = (x + 1)2 + (y + 1)2, hence 2x + 1 + 2y + 1 = 0. It follows
that y = −(x+ 1) and d must be of the form d = x2 + (x+ 1)2. In that case,

csc(∠ABC) =
2
√
d√
2

=
»

2(x2 + (x+ 1)2)

and the least x for which this exceeds 2018 is x = 1009, meaning d = 10092 + 10102.

• Finally assume AC ≥
√

3. Then 2018 < 2
√
d

AC ≤
»

4
3d, which would mean d > 20182 · 34 > 10092 + 10102.

Thus all values of d achieved in this case are greater than the value of d in the second case.

In conclusion, the least possible value of d is 10092 + 10102 = 2038181. This value of d is indeed possible, as
the points A = (1009, 1010), B = (−1009,−1010), and C = (1010, 1009) satisfy the conditions of the problem.

Problem 8. Compute the number of unordered collections of three integer-area rectangles such that the three
rectangles can be assembled without overlap to form one 3 × 5 rectangle. (For example, one such collection
contains one 3 × 3 and two 1 × 3 rectangles, and another such collection contains one 3 × 3 and two 2 × 1.5
rectangles. The latter collection is equivalent to the collection of two 1.5×2 rectangles and one 3×3 rectangle.)

Solution 8. In order to enumerate the possible rectangles it is necessary to consider several cases. One possible
approach is presented below.

Consider the possible dissections of the given 3× 5 rectangle. There are four shapes which can be achieved, as
shown below.

Case 1 Case 2

Case 3 Case 4

6= 2

Begin by counting the number of unordered collections that arise from each case.

• In Case 1, a collection corresponds to a multiset {a, b, c} satisfying a+ b+ c = 15 (as the three rectangles
can be reordered freely). Assume, without loss of generality, that a ≤ b ≤ c. To eliminate the inequality

7



constraints, let x = a − 1, y = b − a, z = c − b denote nonnegative integers. Accordingly, a = x + 1,
b = x + y + 1, z = x + y + z + 1, and the given equation now reads x + 2y + 3z = 12 or, equivalently,
2y + 3z ≤ 12. The number of solutions in nonnegative integers is then

4∑
z=0

Å
1 +

õ
12− 3z

2

ûã
= 7 + 5 + 4 + 2 + 1 = 19.

• Case 2 has 19 solutions by repeating the argument from Case 1 verbatim.

• In Case 3, denote by 15−n the area of the top rectangle. The number of possible dissections of the lower
rectangle is then exactly bn/2c. Moreover, the top rectangle (because it has a side length of 5) is never
congruent to either of the lower rectangles. Thus the number of solutions in this case is

14∑
n=1

⌊n
2

⌋
= 49.

• In Case 4, assume the leftmost region does not have width 2. This ensures that Case 2 and Case 4 will be
disjoint from each other, because the two rectangles on the right will not form a 3× 3 square that could
be rotated to obtain a dissection already counted in Case 2.

In order to count the number of such configurations, denote by 15 − n the area of the left rectangle,
where 15− n 6= 3 · 2 or, equivalently, n 6= 9. Then repeating the logic of Case 3 gives a count of

14∑
n=1
n 6=9

⌊n
2

⌋
= 49−

õ
9

2

û
= 45.

It has already been checked that Cases 3 and 4 are disjoint, and the other pairs of cases are seen to be mutually
exclusive by comparing the number of sides of length 5 in the dissection. Consequently, the final answer is
19 + 19 + 49 + 45 = 132.

Problem 9. Let Γ be a circle with diameter XY and center O, and let γ be a circle with diameter OY . Circle
ω1 passes through Y and intersects Γ and γ again at A and B, respectively. Circle ω2 also passes through Y
and intersects Γ and γ again at D and C, respectively. Given that AB = 1, BC = 4, CD = 2, and AD = 7,
compute the sum of the areas of ω1 and ω2.

Solution 9. Note that A, B, C, and D are collinear, in that order, because AD = AB +BC + CD. Extend Y B
and Y C to meet Γ again at P and Q, respectively. Then BC is the midline of 4Y PQ, by homothety. By
power of a point, AB ·BD = 1 · (4 + 2) = PB ·BY = BY 2, so BY =

√
6. Similarly, CY =

√
2 · (4 + 1) =

√
10.

In particular, 4BY C is right.

8
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Now let S and T be the antipodes of B and C on ω1 and ω2, respectively. It remains to evaluate BS and CT .
First note that m∠BY S = 90◦ and m∠CAS = m∠BAS = 90◦. Because m∠BY C = 90◦, it follows that points
C, Y , and S are collinear and that 4CY B ∼ 4CAS. Therefore

AS =
Y B

Y C
·AC =

…
6

10
· 5 =

√
15,

hence BS =
√
AS2 +AB2 = 4. In the same fashion, with 4BY C ∼ 4BDT ,

DT =
Y C

BY
·BD =

…
10

6
· 6 =

√
60,

hence CT =
√
DT 2 + CD2 = 8. So the sum of the areas of ω1 and ω2 is π(22 + 42) = 20π.

Problem 10. In the number puzzle below, clues are given for the four rows, each of which contains a four-digit
number. Cells inside a region bounded by bold lines must all contain the same digit, and each of the eight
regions contains a different digit. The variables in the clues are all positive integers. Complete the number
puzzle.

1: 4a + 13b + 14c

2: 5p + 13q + 17r

3: 4x + 5y + 31z

4: the average of the other 3 rows

Solution 10. The following solution only relies on the clues for the third and fourth rows. Label the digits in the
array as follows.

A B C D
A B Y D
W B Y Z
W X Y Z

9



The solution proceeds in three steps.

Step 1. The final row is the average of the first three rows, which implies

3(1000W + 100X + 10Y + Z) = 1000(2A+W ) + 100(3B) + 10(C + 2Y ) + (2D + Z).

This rearranges to
0 = 2000(A−W ) + 300(B −X) + 10(C − Y ) + 2(D − Z).

By comparing the magnitudes of |2000(A−W )| to |300(B−X) + 10(C − Y ) + 2(D−Z)|, it is impossible
to have |A−W | ≥ 2, hence A−W = ±1. A similar argument gives B −X = ∓7, and then C − Y = ±9,
D − Z = ±5, where the signs correspond. In particular, {C, Y } = {0, 9}.

Step 2. Next, the number in the third row satisfies

4x + 5y + 31z ≡ 4x + 6 (mod 10)

and consequently either Z = 0 or Z = 2. However, one of C and Y must be 0, hence Z = 2 . This can

only occur if D = 7 , which determines all the signs in the previous step: it follows that A −W = −1,

B −X = −7, C − Y = 9, D − Z = 5. In particular, C = 9 and Y = 0 .

Step 3. Because B − X = −7 and the digits 0 and 2 have already been used, it follows that B = 1 and

X = 8 . The third clue now reads
4x + 5y + 31z = W 1 0 2.

The mod 10 calculation in the previous step implies that x is even and in particular, x > 1. Taking the
previous equation modulo 8 gives 5y + 31z ≡ 102 ≡ 6 (mod 8), which can only occur if y is odd and z
is even. This implies z = 2 (as z ≤ 2). Therefore 4x + 5y ≡ 141 (mod 1000) and because x ≤ 6 is even,
y ≤ 5, and this forces x = 2 and y ∈ {3, 5}. The value y = 3 would give W = 1, which is not permitted

because B = 1, so y = 5 and W = 4 . Finally, A = 5 .

The completed number puzzle reads as follows.

5 1 9 7
5 1 0 7
4 1 0 2
4 8 0 2
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4 Power Question 2018: Partitions

Instructions: The power question is worth 50 points; each part’s point value is given in brackets next to the part.
To receive full credit, the presentation must be legible, orderly, clear, and concise. If a problem says “list” or “com-
pute,” you need not justify your answer. If a problem says “determine,” “find,” or “show,” then you must show
your work or explain your reasoning to receive full credit, although such explanations do not have to be lengthy. If a
problem says “justify” or “prove,” then you must prove your answer rigorously. Even if not proved, earlier numbered
items may be used in solutions to later numbered items, but not vice versa. Pages submitted for credit should be
NUMBERED IN CONSECUTIVE ORDER AT THE TOP OF EACH PAGE in what your team considers to be
proper sequential order. PLEASE WRITE ON ONLY ONE SIDE OF THE ANSWER PAPERS. Put the TEAM
NUMBER (not the team name) on the cover sheet used as the first page of the papers submitted. Do not identify
the team in any other way.

Binary Partitions

A binary partition of a positive integer n is an ordered n-tuple of non-increasing integers, each of which is either 0
or a power of 2, whose sum is n. Each of the integers in the n-tuple is called a part of the partition. Each binary
partition of n has n parts. Let p2(n) denote the number of binary partitions of n. For example, p2(3) = 2 because
of the two ordered triples (2, 1, 0) and (1, 1, 1).

1. Compute p2(n) for n = 4, 5, 6, and 7. [4 pts]

2. a. Show that p2(n) ≤ p2(n+ 1) for all positive integers n. [3 pts]

b. Is the inequality strict for sufficiently large n? Justify your answer. [3 pts]

3. a. Prove that if n is even and n ≥ 4, then p2(n) = p2
(
n
2

)
+ p2(n− 2). [2 pts]

b. Find the least n > 1 such that p2(n) is odd, or prove that no such n exists. [2 pts]

Partial Orderings

A partial ordering on a set S is a relation, usually denoted �, such that all of the following conditions are true:

• a � a for all a ∈ S (reflexivity property),

• a � b and b � c implies a � c for all a, b, c ∈ S (transitivity property), and

• a � b and b � a implies a = b for all a, b ∈ S (antisymmetry property).

The word “partial” refers to the possibility that some two elements, a and b, may be incomparable, i.e., neither
a � b nor b � a (these negative relations on � are sometimes written as a � b and b � a, respectively). This Power
Question largely defines and explores a partial ordering on the set of binary partitions of n.

The notation a ≺ b means that a � b and a 6= b. The symbols � and � may also be used, and they are defined in
the following way: a � b means b ≺ a, and a � b means b � a.

If a and b are elements of S with a ≺ b, and if there is no element c ∈ S for which a ≺ c ≺ b, then it is said
that b covers a.

Let a denote the binary partition (a1, a2, . . . , an). Similarly, let b denote the binary partition (b1, b2, . . . , bn).
In this Power Question, define a ≺ b if it is possible to obtain a from b by a sequence of replacing one 2k by
two 2k−1s (and deleting a 0). For example, (4, 1, 1, 1, 1, 0, 0, 0) ≺ (4, 4, 0, 0, 0, 0, 0, 0) because (4, 1, 1, 1, 1, 0, 0, 0) ≺
(4, 2, 1, 1, 0, 0, 0, 0) ≺ (4, 2, 2, 0, 0, 0, 0, 0) ≺ (4, 4, 0, 0, 0, 0, 0, 0). This Power Question will use this partial ordering on
binary partitions.
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4. a. Show that the binary partitions of 5 are totally ordered; i.e., if p and p′ are two different binary partitions
of 5, then either p ≺ p′ or p′ ≺ p. [2 pts]

b. Show that the binary partitions of 8 are not totally ordered, i.e., find two binary partitions of 8 – call
them q and q′ – such that q ⊀ q′ and q′ ⊀ q. [3 pts]

5. a. Find the smallest binary partition of n, using this partial ordering. That is, find the binary partition p
such that for all other binary partitions p′, p ≺ p′. [2 pts]

b. Find the largest binary partition of n, using this partial ordering. That is, find the binary partition P
such that for all other binary partitions P ′, P � P ′. [3 pts]

Hasse Diagrams

Suppose that a set S has a partial ordering �. Then a Hasse diagram can be used to display the covering relation
in a graphical way. The Hasse diagram is a graph whose vertices are the elements of S and where edges are drawn
between two elements x and y if x ≺ y or y ≺ x and if there is no element z for which x ≺ z and z ≺ y or for which
y ≺ z and z ≺ x. Also, y appears “above” x if x ≺ y. Note that it is possible for more than one element to appear on
the same level of a Hasse diagram. For example, the partially ordered set of divisors of 12, ordered by divisibility, is
shown in Figure 1. In this diagram, the number 1 is said to be at Level 0 because it is the least divisor in the partial
ordering shown. The numbers 2 and 3 are said to be on Level 1 because 2 � 1 and 3 � 1 and there is no number n
such that 2 � n and n � 1 or 3 � n and n � 1. Other Levels are similarly defined. The number 12 is on Level 3.

2 3

4 6

12

1

Figure 1

Hasse diagrams can be drawn to show the ordering of partitions such as the ones from Problems 4 and 5. For
convenience, rather than labeling the vertices in the Hasse diagram with the partition itself, like (8, 0, 0, 0, 0, 0, 0, 0),
it is common to label the vertex with its nonzero parts only, using exponents to indicate parts within the partition
with multiplicity greater than 1. For example, the partition (8, 0, 0, 0, 0, 0, 0, 0) would be labeled 8, the partition
(4, 2, 2, 0, 0, 0, 0, 0) would be labeled 422, and the partition (2, 2, 1, 1, 1, 1, 0, 0) would be labeled 2214.

6. a. Draw the Hasse diagram for the binary partitions of 8. Label each vertex. [1 pt]

b. List a path through the Hasse diagram for the binary partitions of 8 that begins at the bottom vertex
(that is, the vertex at Level 0) and, traveling only along edges, passes through every other vertex exactly
once. Such a path is called a Hamiltonian path. [1 pt]

c. Let n be an even integer with n > 4. Let S be the set of binary partitions of n. Let S1 be the set of binary
partitions of n

2 . Let S2 be the set of binary partitions of n − 2. Prove that there is a bijection B (i.e., a
one-to-one correspondence) from the set S to the set S1 ∪S2. Prove that this bijection B preserves order;
that is, given that p ≺ p′ for binary partitions p, p′ ∈ S, then either B(p) ≺ B(p′) or B(p) and B(p′) are
incomparable. [3 pts]

d. Prove that for each positive integer n, the Hasse diagram of the binary partitions of n has a Hamiltonian
path that begins with the vertex at Level 0. [5 pts]

Let fL(n) represent the number of elements at level L in the Hasse diagram of the binary partitions of n.

7. Prove that the value of fL(n) is the number of binary partitions of n that have n− L nonzero parts. [3 pts]

12



8. Not all partitions are binary partitions. Some partitions have parts of the form 2j − 1 where j is a nonnegative
integer. Such partitions will be called s-partitions, and their parts are written in nonincreasing order. Two
s-partitions of 5 are (3, 1, 1, 0, 0) and (1, 1, 1, 1, 1).

a. List two partitions of 7, one that is an s-partition and one that is neither an s-partition nor a binary
partition. Make sure to identify which is which. [2 pts]

b. Prove that if n ≥ 2L, the value of fL(n) is equal to the number of s-partitions of L. [3 pts]

Trinary Partitions

A trinary partition of a positive integer n is an ordered n-tuple of non-increasing integers, each of which is either 0
or a power of 3, whose sum is n. Let p3(n) denote the number of trinary partitions of n. For example, p3(4) = 2
because of the two ordered quadruples (3, 1, 0, 0) and (1, 1, 1, 1).

As with binary partitions, one can define partial orderings for trinary partitions. Let c denote the trinary par-
tition (c1, c2, . . . , cn). Similarly, let d denote the trinary partition (d1, d2, . . . , dn). Define c ≺ d if it is possible to
obtain c from d by a sequence of replacing one 3k by three 3k−1s (and deleting two 0s).

9. Draw the Hasse diagram for the trinary partitions of 12. Label each vertex. [2 pts]

10. State a value of n less than 23 for which the Hasse diagram of the trinary partitions of n does not contain a
Hamiltonian path. Prove your claim. (Recall that a Hamiltonian path is defined in Problem 6b.) [6 pts]

13



5 Solutions to Power Question

1. The values are as follows.
The value of p2(4) is 4 from (4, 0, 0, 0), (2, 2, 0, 0), (2, 1, 1, 0), and (1, 1, 1, 1).
The value of p2(5) is 4 from (4, 1, 0, 0, 0), (2, 2, 1, 0, 0), (2, 1, 1, 1, 0), and (1, 1, 1, 1, 1).
The value of p2(6) is 6 from (4, 2, 0, 0, 0, 0), (4, 1, 1, 0, 0, 0), (2, 2, 2, 0, 0, 0), (2, 2, 1, 1, 0, 0), (2, 1, 1, 1, 1, 0), and
(1, 1, 1, 1, 1, 1).
The value of p2(7) is 6 from (4, 2, 1, 0, 0, 0, 0), (4, 1, 1, 1, 0, 0, 0), (2, 2, 2, 1, 0, 0, 0), (2, 2, 1, 1, 1, 0, 0),
(2, 1, 1, 1, 1, 1, 0), and (1, 1, 1, 1, 1, 1, 1).

2. a. A binary partition for n can be changed into a binary partition for n + 1 by inserting a 1 immediately
following the rightmost nonzero entry. For example, (2, 2, 1, 1, 0, 0) is a binary partition of 6, and this
can be changed into (2, 2, 1, 1, 1, 0, 0), which is a binary partition of 7. Similarly, (1, 1, 1, 1) becomes
(1, 1, 1, 1, 1), and these are binary partitions of 4 and 5, respectively. Different binary partitions of n
become different binary partitions of n + 1 in this way. Because every binary partition of n maps to a
binary partition of n+ 1, there are at least as many binary partitions of n+ 1 as of n.

b. The answer to the question is no. If n is even, then n + 1 is odd. Because a binary partition of an
odd number must contain at least one 1, the correspondence described in the solution to Problem 2a is
one-to-one. To establish this, given a binary partition of n+ 1, delete one 1 to obtain a binary partition
of n. Thus p2(n + 1) = p2(n) for any even n. However, note that if n is odd, then p2(n + 1) is strictly
greater than p2(n) because in addition to the binary partitions of n+ 1 that can be obtained by inserting
a 1 into a binary partition of n, there are binary partitions of n+ 1 consisting of all even numbers.

3. a. Let n be an even integer. Given a binary partition of n, either all of its parts are even or there is at least
one 1. If all parts are even, then all of the positive parts must occur in the first n

2 elements of the n-tuple
(otherwise, their sum would exceed n). Dividing all the parts by 2 yields an n-tuple of powers of 2 and 0s
that sum to n

2 . Note that the last n
2 elements of this n-tuple must all be 0s and truncating them results in

an
(
n
2

)
-tuple which is a binary partition of n2 . Conversely, for any binary partition of n2 , by doubling each

element and appending n
2 zeros at the end results in an n-tuple which is a binary partition of n. Hence

p2
(
n
2

)
counts the number of binary partitions of n in which all the parts are even. If there is at least one

1, then the assumption that n is even means that there are at least two 1s, and deleting them produces a
binary partition of n − 2. Conversely, for each binary partition of n − 2, appending two 1s (right before
the 0s, if there are any, otherwise, append them to the end of the (n− 2)-tuple) produces an n-tuple that
is a binary partition of n. Hence p2(n− 2) counts the number of binary partitions of n with at least one
1, and thus the desired recursion follows.

b. There is no such n. Proceed by cases. If n is odd, then p2(n) = p2(n− 1) because all binary partitions
of an odd number include at least one 1, and removing that 1 gives a bijection to partitions of n − 1. If
n is even, then p2(n) = p2

(
n
2

)
+ p2(n − 2) by Problem 3a. Because p2(2) = 2 and p2(4) = 4, it follows

inductively that p2(n) is even for all n > 1.

4. a. The four binary partitions of 5 are ordered in the following way: (1, 1, 1, 1, 1) ≺ (2, 1, 1, 1, 0) ≺ (2, 2, 1, 0, 0) ≺
(4, 1, 0, 0, 0). This is a total ordering.

b. Consider these two binary partitions of 8: (4, 1, 1, 1, 1, 0, 0, 0) and (2, 2, 2, 2, 0, 0, 0, 0). The 4 can break
down into two 2s, but that is the only way to generate 2s, and that does not generate four 2s, so it is not
the case that (2, 2, 2, 2, 0, 0, 0, 0) ≺ (4, 1, 1, 1, 1, 0, 0, 0). Likewise, it is not possible for a partition with no 4s
to be related by ≺ to a partition with 4s, so it is not the case that (4, 1, 1, 1, 1, 0, 0, 0) ≺ (2, 2, 2, 2, 0, 0, 0, 0).

Similarly, the following two pairs of partitions are not comparable:

(4, 1, 1, 1, 1, 0, 0, 0) and (2, 2, 2, 1, 1, 0, 0, 0), (4, 2, 1, 1, 0, 0, 0, 0) and (2, 2, 2, 2, 0, 0, 0, 0).

5. a. The smallest binary partition of n is the partition with n 1s. That is, it is the partition (1, 1, . . . , 1) with
n copies of 1 in the partition. If a partition has any part that is not equal to 0 or 1, then that part is a
positive power of 2 that may be replaced by lesser powers of 2. This process can continue until all of the
powers of 2 are 1s, but the process cannot continue beyond that because a partition must consist only
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of integers. Thus every binary partition is greater than the one consisting of all 1s. Also note that the
partition (1, 1, . . . , 1) is not larger than or incomparable with any other partition. Thus (1, 1, . . . , 1) is the
smallest binary partition.

b. The largest binary partition of n is the one that essentially gives the base-2 equivalent of n. That is, if
the base-2 representation of n has 1s in the 2a, 2b, 2c places, and so on, with a > b > c > · · · , then
the largest binary partition of n is (2a, 2b, 2c, . . . , 0, 0, 0) (with enough 0s to finish the partition). If a
partition contains two copies of a number other than 0, they may be combined to form a greater power
of 2. Thus, starting with any partition, continue combining powers of 2 until the partition contains no
repeated numbers. Because no further combinations are allowed at this point, by the definition, there can
be no partition larger than a partition with no repeated numbers. A priori there could be other partitions
that are not comparable to such a partition, however. But because such a partition expresses n as a sum
of powers of 2, with no repeated nonzero parts, it is essentially the base-2 representation of n, which is
unique. So because any partition may undergo the process of combining like powers of 2 until there are
no repeats, every binary partition is less than the unique partition which expresses n in binary.

6. a. A Hasse diagram for the binary partitions of 8 is shown below.

b. The following sequence of vertices is a Hamiltonian path: 18, 216, 2214, 414, 4212, 2312, 24, 422, 42, 8. This
path begins at the vertex at Level 0, then visits each vertex exactly once.

c. The bijection was effectively established in the solution to 3a. Now consider whether B(p) ≺ B(p′) for p
and p′ which are different binary partitions of n and for which p ≺ p′. Suppose first that both p and p′

have no 1s at all. Then dividing all parts by 2 preserves the covering relation. This is because p can be
produced by swapping out powers of 2 in p′ for lesser powers of 2, and dividing all parts by 2 does not
change this covering. Now suppose that p and p′ both have at least two 1s. Then removing two 1s from
each partition preserves the covering relation. This is because removing two 1s from the partition in no
way changes the “swap-outs” of powers of 2 for lesser powers of 2. Now suppose that one of p or p′ has
two 1s and the other doesn’t. Then B(p) is incomparable with B(p′), because B(p) ∈ S1 and B(p′) ∈ S2

or vice versa, and these are sets of partitions of different numbers because n − 2 > n
2 when n > 4. The

relation ≺ is not defined between partitions of different numbers, so B(p) and B(p′) are not comparable.

d. As in the solutions to Problems 2 and 3, it is only necessary to consider the problem for even n. This
is because a Hasse diagram for partitions of 2r + 1 is the same as that for the partitions of 2r with an
extra 1 in every partition. So let n = 2r = a · 2k, where a is an odd integer and k is positive. The proof
proceeds by strong induction to prove that there is a Hamiltonian path through the Hasse diagram for
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partitions of n starting at 1n and ending at (2k)a. To get started, the path 12 → 2 is clearly a Hamiltonian
path through the vertices of the Hasse diagram for partitions of 2, and the path 14 → 212 → 22 → 4 is a
Hamiltonian path through the vertices of the Hasse diagram for partitions of 4. These establish the base
case.

The idea of the proof will be to use the bijection from part c. In essence, the partitions of n will be
split into those that are matched with partitions of n − 2 and those that are partitions of n/2, and the
Hamiltonian paths through each of these sets of smaller partitions will be joined into a single path through
the partitions of n.

The path starts at 1n. Consider this as 1n−212. That is, group the first n − 2 1s together and the
last two 1s together. From the induction hypothesis, there is a Hamiltonian path through the partitions
of n−2 starting with 1n−2. By adjoining two 1s to each of these, there is a Hamiltonian path through the
partitions of n that have two or more 1s in them. This path ends at (2`)c12, where n−2 = 2(r−1) = c ·2`,
c is an odd integer, and ` is positive. The manner in which the path will be continued through the parti-
tions of n with no 1s in them is dependent on the parity of r.

First consider the case in which r is even. Then r − 1 is odd. In this case, c = r − 1 and ` = 1.
Thus the path in the previous paragraph ended at 2c12. The next step in the path will be to 2c+1 = 2r.
Now by induction, there is a Hamiltonian path through the partitions of n/2 = r starting at 1r and ending
at (2k−1)a. Double every entry of each of these partitions. This gives a Hamiltonian path through the
partitions of n that have no 1s in them, starting at 2r and ending at (2k)a. Attaching this to the end of
the path from 1n to 2r already obtained results in the desired Hamiltonian path from 1n to (2k)a.

In the case where r is odd, r − 1 is even. In this case, a = r and k = 1, while n − 2 = 2(r − 1)
must be a multiple of 4. So the path through the partitions of n containing 1s ended at (2`)c12 for some
` ≥ 2. The next step will be to the partition (2`)c2. Now r = n/2 is odd, so every binary partition of r
must contain at least one 1. Note that these are the binary partitions of r − 1 with a 1 adjoined, and by
induction, there is a Hamiltonian path through them starting at 1r and ending at (2`−1)c1. Double each
entry of each of these, and run through this path backward to obtain a path starting at (2`)c2 and ending
at 2r. Concatenating this with the path from 1n to (2`)c2 previously obtained will yield the desired path
from 1n to 2r = (2k)a.

7. Proceed by induction on L. The only element for which L = 0 is the smallest binary partition of n, which
indeed has n 1s by the solution to Problem 5, and so this partition has n− L = n− 0 parts. Moving up via a
covering relation, when two 2ks are replaced by one 2k+1, it is true that one nonzero part is lost. Assuming an
element at level L has n− L nonzero parts, an element at level L+ 1 will have n− L− 1 = n− (L+ 1) parts.
This establishes the inductive step.

8. a. There are several s-partitions of 7. They include (7, 0, 0, 0, 0, 0, 0), (3, 3, 1, 0, 0, 0, 0), (3, 1, 1, 1, 1, 0, 0), and
(1, 1, 1, 1, 1, 1, 1). Other partitions of 7 are not s-partitions; some of those are also not binary. They
include (6, 1, 0, 0, 0, 0, 0), (5, 2, 0, 0, 0, 0, 0), (5, 1, 1, 0, 0, 0, 0), (3, 2, 2, 0, 0, 0, 0), and (3, 2, 1, 1, 0, 0, 0).

b. Construct a bijection. Given a binary partition of n at level L, subtract 1 from each nonzero part. Hence
each part 2j is replaced by 2j − 1, leaving an s-partition of n− (n− L) = L.

For the inverse map, consider an s-partition of L, with parts of the form 2j−1 for some positive integer j.
This cannot have more than L parts, and that is achievable only with all parts equal to 1. Consider the
partition to end in enough 0s to bring the total number of parts up to n − L; this is possible because
n − L = n − 2L + L ≥ 2L − 2L + L = L. Now add 1 to each part. The result is a binary partition of
L+ n− L = n with n− L parts, which puts it at level L by Problem 7.

9. A Hasse diagram for the trinary partitions of 12 is shown below.
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10. The three possible answers are 18 or 19 or 20. A Hasse diagram for the trinary partitions of 18 is shown
below. The answer will be established when it is shown that there is no Hamiltonian path through the Hasse
diagram. Note that all Hasse diagrams for the trinary partitions of 18 are isomorphic to the one in the figure.
Note also that the Hasse diagram for the trinary partitions of 19 is isomorphic to the Hasse diagram for the
trinary partitions of 18; a bijection can be established by adding a 1 after the rightmost nonzero part of any
trinary partition of 18. Similarly, the Hasse diagram for the trinary partitions of 20 is isomorphic to the Hasse
diagram for the trinary partitions of 18.

Suppose there is a Hamiltonian path through the Hasse diagram. Because the Hasse diagram has only one
edge coming from 118 and only one edge coming from 92, the Hamiltonian path must begin and end at those
vertices in some order. Without loss of generality, assume the path begins at 118 and ends at 92.

The path must be of the form 118, 3115, 32112, 3319, . . . , 92. The first choice comes when deciding if the fifth
vertex in the path is 919 or 3416. If the choice is to make 3416 the fifth vertex in the path, then it is not
possible to enter and leave 919 because the edge {3319, 919} cannot be used for entry or for exit; both would
require revisiting 3319. So the fifth vertex in the path must be 919, and thus the sixth vertex in the path is 9316.

The next choice comes when considering the seventh vertex in the path. If the seventh vertex is 93213,
then it will be impossible to visit 3416 and also 92. If the seventh vertex is 3416, then the eighth vertex in
the path is 3513, and either choice from that vertex (93213 or 36) leads to a contradiction because to visit the
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other requires a path that prevents visiting 92. This completes the proof that the Hasse diagram of the trinary
partitions of 18 does not contain a Hamiltonian path.

Checking other possible values of n that are multiples of 3, there is a Hamiltonian path through the Hasse
diagrams for each one, as the following argument demonstrates.

• A Hamiltonian path through the Hasse diagram for n = 3 is 13, 3.

• A Hamiltonian path through the Hasse diagram for n = 6 is 16, 313, 32.

• A Hamiltonian path through the Hasse diagram for n = 9 is 19, 316, 3213, 33, 9.

• A Hamiltonian path through the Hasse diagram for n = 12 is 112, 319, 3216, 3313, 913, 93, 34.

• A Hamiltonian path through the Hasse diagram for n = 15 is 115, 3112, 3219, 3316, 916, 9313, 932, 35, 3413.

• A Hamiltonian path through the Hasse diagram for n = 21 is 121, 3118, 32115, 33112, 9112, 9319, 3419, 3516,
93216, 93313, 934, 923, 9213.

Note that there are Hamiltonian paths through the Hasse diagram for both n = 1 (the path is just the vertex
1) and n = 2 (the path is 12, 2). Note also that if k is a positive integer, the Hasse diagrams for the trinary
partitions of n = 3k, n = 3k + 1, and n = 3k + 2 are all isomorphic, in the same way that the Hasse diagrams
for the trinary partitions of 18, 19, and 20 are isomorphic.

Thus the only values of n less than 23 for which the Hasse diagram of trinary partitions does not contain
a Hamiltonian path are 18 or 19 or 20.
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6 Individual Problems

Problem 1. Compute the greatest prime factor of N , where

N = 2018 · 517 + 517 · 2812 + 2812 · 666 + 666 · 2018.

Problem 2. Compute the number of ordered pairs of positive integers (a, b) that satisfy

a2b3 = 2018.

Problem 3. Compute the number of positive three-digit multiples of 3 whose digits are distinct and nonzero.

Problem 4. In 4ABC, cos(A) =
2

3
and cos(B) =

2

7
. Given that the perimeter of 4ABC is 24, compute the area

of 4ABC.

Problem 5. Compute the product of all positive values of x that satisfy

bx+ 1c2x − 19bx+ 1cx + 48 = 0.

Problem 6. Triangle ABC is inscribed in circle ω. The line containing the median from A meets ω again at M ,
the line containing the angle bisector of ∠B meets ω again at R, and the line containing the altitude from C
meets ω again at L. Given that quadrilateral ARML is a rectangle, compute the degree measure of ∠BAC.

Problem 7. Let S be the set of points (x, y) whose coordinates satisfy x2 + y2 ≤ 36 and (max{x, y})2 ≤ 27.
Compute the perimeter of S.

Problem 8. Rectangle PQRS is drawn inside square ABCD, as shown. Given that [APS] = 20 and [CQR] = 18,
compute [ABCD].

Problem 9. Compute the least positive four-digit integer N for which N and N+2018 contain a total of 8 distinct
digits.

Problem 10. Compute the least positive value of t such that

Arcsin(sin(α)), Arcsin(sin(2α)), Arcsin(sin(7α)), Arcsin(sin(tα))

is a geometric progression for some α with 0 < α < π
2 .
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7 Answers to Individual Problems

Answer 1. 23

Answer 2. 28

Answer 3. 180

Answer 4. 12
√
5

Answer 5. 4

Answer 6. 36 (or 36◦)

Answer 7. 8π + 12 (or 12 + 8π)

Answer 8. 243

Answer 9. 1489

Answer 10. 9− 4
√
5 (or −4

√
5 + 9)
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8 Solutions to Individual Problems

Problem 1. Compute the greatest prime factor of N , where

N = 2018 · 517 + 517 · 2812 + 2812 · 666 + 666 · 2018.

Solution 1. Factor N as follows:

N = 517 · (2018 + 2812) + 666 · (2812 + 2018)

= (517 + 666) · (2018 + 2812)

= 1183 · 4830

= (7 · 169) · (2 · 5 · 3 · 161)

= (7 · 132) · (2 · 3 · 5 · 7 · 23).

Each of the integers 2, 3, 5, 7, 13, and 23 is prime. Thus the largest prime factor of N is 23.

Problem 2. Compute the number of ordered pairs of positive integers (a, b) that satisfy

a2b3 = 2018.

Solution 2. The prime factorization of 2018 is 236 · 518, so a and b may only have prime factors of 2 and 5. Let

a = 2x · 5y. Then b3 = 236·518
a2 = 236−2x · 518−2y. The value of b will be an integer if and only if both 36 − 2x

and 18− 2y are nonnegative multiples of 3. Therefore x and y must both be nonnegative multiples of 3. This
means that x ∈ {0, 3, 6, 9, 12, 15, 18} and y ∈ {0, 3, 6, 9}, so there are a total of 7 · 4 = 28 solution pairs.

Problem 3. Compute the number of positive three-digit multiples of 3 whose digits are distinct and nonzero.

Solution 3. If a number is divisible by 3, then the sum of its digits is divisible by 3. The digits must be equivalent
to one of the following (modulo 3): 0, 0, 0; 1, 1, 1; 2, 2, 2; or 0, 1, 2. Note that there are 3 possible nonzero
digits congruent to each of 0, 1, and 2 (modulo 3). Therefore the number of ways to choose the three digits
(without regard to their order) is

3 ·
Ç

3

3

å
+

Ç
3

1

å
·
Ç

3

1

å
·
Ç

3

1

å
= 3 · 1 + 3 · 3 · 3 = 30.

Having chosen the three digits, consider the number of ways the three digits can be ordered. There are 3! = 6
ways to order the three digits, and this gives a total of 30 · 6 = 180 three-digit numbers.

Problem 4. In 4ABC, cos(A) =
2

3
and cos(B) =

2

7
. Given that the perimeter of 4ABC is 24, compute the area

of 4ABC.

Solution 4. Let D be the foot of the altitude from C. By the Law of Sines, ab = sinA
sinB =

√
5/3

3
√
5/7

= 7
9 . Thus b = 9a

7 ,

AD = b cosA = 6a
7 , and BD = a cosB = 2a

7 . Because the perimeter of 4ABC is 24, solve a+ 9a
7 + 6a

7 + 2a
7 = 24

to obtain a = 7, which implies b = 9 and c = 8. By Heron’s Formula, [ABC] =
√

12 · 5 · 3 · 4 = 12
√

5.
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Alternatively, drop altitude CD as before, and then apply the definition of cosine for ∠CAD in 4CAD and
for ∠CBD in 4CBD. Thus AD = 2x and AC = 3x for some real x and DB = 2y and CB = 7y for some
real y. By the Pythagorean Theorem, (CD)2 = 9x2 − 4x2 = 5x2 and (CD)2 = 49y2 − 4y2 = 45y2. This
implies 5x2 = 45y2 so x = 3y. Substituting, AD = 6y and AC = 9y. Because the perimeter of 4ABC is 24,
9y+7y+6y+2y = 24→ y = 1, soAB = 8 and CD =

√
45y2 =

√
45 = 3

√
5. Thus [ABC] = 1

2 ·8·(3
√

5) = 12
√

5.

Problem 5. Compute the product of all positive values of x that satisfy

bx+ 1c2x − 19bx+ 1cx + 48 = 0.

Solution 5. Introduce the substitution y = bx + 1cx. Then the given equation becomes y2 − 19y + 48 = 0, and
the left-hand side of the equation in y factors as (y − 3)(y − 16) = 0. Therefore bx+ 1cx = 3 or bx+ 1cx = 16.

Case 1: y = bx+1cx = 3. Note that if 0 ≤ x ≤ 1, then bx+1cx ≤ 2 and if x ≥ 2, then bx+1cx ≥ 9. Therefore
1 < x < 2, and hence bx+ 1c = 2. The equation 2x = 3 has the solution x = log2 3, and indeed, 1 < log2 3 < 2,
which checks.

Case 2: y = bx + 1cx = 16. Note that if 0 ≤ x ≤ 2, then bx + 1cx ≤ 9 and if x ≥ 3, then bx + 1cx ≥ 64.
Therefore 2 < x < 3, and hence bx + 1c = 3. The equation 3x = 16 has the solution x = log3 16, and indeed,
2 < log3 16 < 3, which checks.

Use the change of base rule for logarithms to obtain the simplified product of the solutions:

(log2 3)(log3 16) =
log 3

log 2
· log 16

log 3
=

log 16

log 2
= log2 16 = 4.

Problem 6. Triangle ABC is inscribed in circle ω. The line containing the median from A meets ω again at M ,
the line containing the angle bisector of ∠B meets ω again at R, and the line containing the altitude from C
meets ω again at L. Given that quadrilateral ARML is a rectangle, compute the degree measure of ∠BAC.

Solution 6. Because ARML is a rectangle inscribed in a circle, its diagonal AM is a diameter of ω. The point B

is on the circle and in one half-plane bounded by
←−→
AM . Because AM passes through the midpoint of side BC,

the point C is on the circle and in the opposite half-plane bounded by
←−→
AM as B. Also, C must be the same

distance from AM as B. Therefore either C is the reflection of B across line AM or C is the reflection of B
across O, the center of ω, as shown below.
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For ARML to be a rectangle, it is sufficient that LR be a diameter of ω or, equivalently, that m∠LMR = 90◦.
So consider the two cases for C, above, and determine if in either case it is possible to have m∠LMR = 90◦.

In the first case, 4ABC is isosceles with AB = AC. Let β = m∠ABC = m∠ACB. Then m∠AMR =
m∠ABR = β

2 and m∠AML = m∠ACL = 180◦− 90◦−m∠BAC = 2β− 90◦. Setting β
2 + 2β− 90◦ = 90◦ gives

β = 72◦. Then m∠BAC = 180◦ − 2β = 36◦.

O

A

M
B C

R

L

In the second case, BC is a diameter of ω, so m∠BAC = 90◦. This means that L is coincident with A, which
leads to a degenerate result. Thus the only possible value for m∠BAC is 36◦.

Alternate Solution: Place the triangle in the complex plane so that ω coincides with the unit circle, and
a = 1. (Here, a lowercase letter represents the complex coordinates of the point denoted by the corresponding
uppercase letter.) Then m = −1 because diagonal AM of rectangle ARML is a diameter of ω. Because the
midpoint of BC has coordinates b+c

2 and because it lies on AM (which coincides with the real axis), it follows
that b + c ∈ R → b + c = 1

b + 1
c → bc(b + c) = b + c, and thus either bc = 1 or b + c = 0. The latter cannot

be true, as it implies that ∠BAC is a right angle, and thus ` = a, r = m = −1, and then c = a, which
results in a degenerate triangle. Hence bc = 1. Now, using some identities about the unit circle in the complex
plane (which are straightforward to prove), conclude that r2 = ac (due to arc bisection) and c` = −ab (from
perpendicular chords). Expressing everything in terms of r:

c =
r2

a
= r2, b =

1

c
= r−2, and ` = −ab

c
= −r−4.

Because ARML is a rectangle, its other diagonal, RL, must also be a diameter of ω. Then r = −` = r−4 →
r5 = 1, and so r is a fifth root of unity. It is impossible for r to be 1, as this would cause triangle ABC to
be degenerate. Also, by replacing r with r, note that the entire diagram is reflected across the real axis, and
the measure of ∠BAC does not change. Thus there are only two cases to consider: r = e

2πi
5 and r = e

4πi
5 .

Suppose that r = e
4πi
5 . Then c = e

8πi
5 and b = e

2πi
5 . But then B and L would lie on the same side of AC, and

BL would be the external angle bisector of ∠B. Thus r = e
2πi
5 , which implies b = e

6πi
5 and c = e

4πi
5 . Then

minor arc BC measures 2π
5 radians, which is 72◦, and so the degree measure of ∠BAC is half of that, or 36◦.

Problem 7. Let S be the set of points (x, y) whose coordinates satisfy x2 + y2 ≤ 36 and (max{x, y})2 ≤ 27.
Compute the perimeter of S.
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Solution 7. Let C be the region defined by x2 + y2 ≤ 36, and let R be the region defined by (max{x, y})2 ≤ 27,
so S = C ∩R. If (x, y) ∈ R, then neither x nor y can be greater than 3

√
3, and at least one of the coordinates

must be between −3
√

3 and 3
√

3. Thus if

R1 =
¶

(x, y) : x ≤ 3
√

3, |y| ≤ 3
√

3
©

and

R2 =
¶

(x, y) : |x| ≤ 3
√

3, y ≤ 3
√

3
©
,

then R = R1 ∪R2. Consider the diagram below.

Most of circle C lies inside the central square R1 ∩ R2, except for the segment cut off by the chord from
A(−3, 3

√
3) to B(3, 3

√
3), and three other identical segments, none of which overlap. The segment on the left

side of C lies inside R1, and the bottom segment lies inside R2. Thus S consists of the circle C with two such
segments removed. If O is the origin, then 4ABO is equilateral with side length 6, so the arc of the circle cut
off by chord AB measures 60◦. Thus removing each segment replaces a 60◦ arc of the circle with a chord of
length 6, so the total perimeter of S, the region remaining, is

2π · 6− 2 · 1

6
(2π · 6) + 2 · 6 = 8π + 12.

Problem 8. Rectangle PQRS is drawn inside square ABCD, as shown. Given that [APS] = 20 and [CQR] = 18,
compute [ABCD].
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Solution 8. Notice first that triangles ABQ,QCR,SPA, and RDS are all similar. Let PS = x and m∠ASP = α,
as shown below.

Then [APS] = PS·AP
2 = x·x tanα

2 = x2 tanα
2 and [CQR] = CQ·CR

2 = x cosα·x cosα tanα
2 = x2 tanα

2 · cos2 α. Hence
18
20 = cos2 α → cosα = 3√

10
. Thus tanα = 1

3 . Now let AB = y. Then BQ = y
3 , so CQ = 2y

3 and CR = 2y
9 .

Thus [CQR] = 2y2

27 = 18, and so [ABCD] = y2 = 243.

Alternate Solution: Because [APS] = 20, [RCQ] = 18, and 4APS ∼ 4RCQ, conclude that
AS2

RQ2
=

20

18
, so

AS =

√
10

3
· RQ. Let RQ = x. Then RQ = PS = x, thus AS =

√
10

3
x, giving AP 2 =

Ç√
10

3
x

å2
− x2 =

x2

9
,

so AP =
x

3
. This implies [APS] =

1

2
· x

3
· x = 20, so x = 2

√
30. Then QC =

3√
10
· 2
√

30 = 6
√

3. Now

let AB = y. Because 4ABQ ∼ 4SPA, it follows that BQ =
y

3
. From y = BQ + QC, conclude that

y =
y

3
+ 6
√

3→ y = 9
√

3. Thus the area of the square is (9
√

3)2 = 243.

A S D

R

C
Q

B

P

x

x

y

Problem 9. Compute the least positive four-digit integer N for which N and N+2018 contain a total of 8 distinct
digits.

Solution 9. Let N = ABC D and N + 2018 = E F GH, where A,B,C,D,E, F,G,H represent distinct digits.
To minimize N , first consider A = 1 and B 6= 9. Then 3018 < N + 2018 < 3918, so E = 3. Because B 6= F ,
there must be a carry from the tens place to the hundreds place, and it follows that C = 8 or C = 9, and
B + 1 = F . The least possible value for B is now 4, so assume B = 4 and F = 5. If there is no carry from the
ones place to the tens place, then the only possibility for the ones digits is D = 0 and H = 8, but this requires
C = 9 and G = 0 to achieve the carry into the hundreds place, which is a contradiction. Therefore there is a
carry from the ones to the tens place. Because G 6= 1, it follows that C = 8 and G = 0. Finally, because D+ 8
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is the two-digit number 1H, it must be that D = H + 2, and because H 6= 0, 1, 3, 4, 5 and D 6= 4, 8, the only
possible values remaining are D = 9 and H = 7. Thus the least possible value of N is 1489.

Problem 10. Compute the least positive value of t such that

Arcsin(sin(α)), Arcsin(sin(2α)), Arcsin(sin(7α)), Arcsin(sin(tα))

is a geometric progression for some α with 0 < α < π
2 .

Solution 10. Let the ratio of consecutive terms in the sequence be r. If there exists an α for which the first three
terms form a geometric progression with ratio r, the least t for which Arcsin sin(tα) continues the sequence will
be t = r3. This solution will focus on finding the least viable ratio r.

Note that as 2α < π, the first two terms of the progression are both positive, so the ratio r must also be
positive. The graphs of y = Arcsin(sin 2x) and y = Arcsin(sin 7x) are both piecewise linear, the latter of which
is positive only for (0, π7 ) ∪ ( 2π

7 ,
3π
7 ), as seen below.

Thus consider only values of α in (0, π7 ) ∪ ( 2π
7 ,

3π
7 ), because all terms in the progression must be positive. The

function Arcsin(sin 7x) is piecewise composed of four line segments in that domain. So, search along these
segments to see if there exists an α for which a geometric progression results.

Along the first segment, no α exists, because the ratios between the first three terms are 2α
α = 2 6= 7α

2α .

Along the second segment, Arcsin(sin 7α) = π − 7α, and the ratio equality becomes 2α
α = π−7α

2α → α = π
11 . In

this case, r = 2, and because r3α = 8π
11 >

π
2 , the geometric progression gets too large to be within the range of

the Arcsin function.

Along the third segment, the three functions are equal to x, π − 2x, 7x − 2π, so the ratio equality is π−2α
α =

7α−2π
π−2α → α = π

3 . In this case, r = 1 and the least t is r3 = 1.

Finally, along the fourth segment, the three functions are equal to x, π − 2x, 3π − 7x, and the ratio equal-

ity is π−2α
α = 3π−7α

π−2α → α = (7±
√
5)π

22 . One can check that the smaller value of α is extraneous while the larger,

α = (7+
√
5)π

22 , is not, and so r = π−2α
α = π

α − 2 = 3−
√
5

2 , which gives r3 = 9 − 4
√

5, which is positive because

9− 4
√

5 =
√

81−
√

80 > 0. This is the least value of t among all cases, so t = 9− 4
√

5.
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9 Relay Problems

Relay 1-1. The number N = 327763 can be expressed as

N = 513 + 583 = 303 + 673.

Compute the least prime factor of N .

Relay 1-2. Let T = TNYWR. Rectangle ABCD has area T + 5. Point M is the midpoint of AB and point N is
a trisection point on CD. The segment MN divides rectangle ABCD into two trapezoids. Compute the area
of the larger of these two trapezoids.

Relay 1-3. Let T = TNYWR. Define the sequence a1, a2, a3, . . . by a1 = 4
√

2, a2 =
√

2, and for n ≥ 3, an =

an−1an−2. Compute the least value of k such that ak is an integer multiple of 2
bTc

.

Relay 2-1. Given that A and B are integers such that 3A+ 2B = 218 and |A−B| is as small as possible, compute
A+B.

Relay 2-2. Let T = TNYWR. Compute the number of lattice points in the interior of the triangle with vertices
(0, T ), (T, 0), and (0, 0).

Relay 2-3. Let T = TNYWR. The integers a and b are chosen from the set {1, 2, 3, . . . , T}, with replacement.
Compute the number of ordered pairs (a, b) for which

a+ b = 4036.
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10 Relay Answers

Answer 1-1. 31

Answer 1-2. 21

Answer 1-3. 11

Answer 2-1. 87

Answer 2-2. 3655

Answer 2-3. 3275
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11 Relay Solutions

Relay 1-1. The number N = 327763 can be expressed as

N = 513 + 583 = 303 + 673.

Compute the least prime factor of N .

Solution 1-1. Note that the factorization a3 + b3 = (a+ b)(a2 − ab+ b2) implies that a+ b is a divisor of a3 + b3.
Thus 51 + 58 = 109 and 30 + 67 = 97 are each factors of N . From long division, N = 31 · 97 · 109, and each of
the three factors in the product is prime, hence the answer is 31.

Alternate Solution: Note that N = 327 · 1000 + 763 and that 327 = 3 · 109 and 763 = 7 · 109. Thus
N = 109(3 · 1000 + 7). As in the first solution, conclude that 97 must be a factor of 3007 and, using long
division, the other factor is 31.

Note: Numbers that can be represented as the sum of two positive cubes in two different ways are exam-
ples of taxicab numbers. The least taxicab number is 1729 (1729 = 103 + 93 = 123 + 13). The origin of the
name “taxicab number” comes from an anecdote involving a visit between mathematicians G. H. Hardy and S.
Ramanujan. Hardy related that the number of the taxi he took to visit Ramanujan was 1729, and he remarked
that the number seemed to be rather dull. Ramanujan countered by stating the fact discussed above.

Relay 1-2. Let T = TNYWR. Rectangle ABCD has area T + 5. Point M is the midpoint of AB and point N is
a trisection point on CD. The segment MN divides rectangle ABCD into two trapezoids. Compute the area
of the larger of these two trapezoids.

Solution 1-2. Let AB = CD = 6x and BC = AD = y. The smaller trapezoid has bases of lengths 2x and 3x, so
its area is 5

2xy. The larger trapezoid has bases of lengths 3x and 4x, so its area is 7
2xy. Because 6xy = T + 5,

the area of the larger trapezoid is 7
12 (T + 5). With T = 31, the desired area is 21.

Relay 1-3. Let T = TNYWR. Define the sequence a1, a2, a3, . . . by a1 = 4
√

2, a2 =
√

2, and for n ≥ 3, an =

an−1an−2. Compute the least value of k such that ak is an integer multiple of 2
bTc

.

Solution 1-3. Make a table consisting of the first few values of the sequence a1, a2, a3, . . . .

n 1 2 3 4 5 6

an 21/4 22/4 23/4 25/4 28/4 213/4

Note that an is of the general form 2Fn+1/4, where Fn denotes the nth Fibonacci number. The desired value
of k has the property that Fk+1 is a multiple of 4 and is the least such value satisfying Fk+1 ≥ 4bT c. With
T = 21, the least Fibonacci number that is both a multiple of 4 and which is greater than or equal to 4 ·21 = 84
is F12 = 144, hence k = 11.

Relay 2-1. Given that A and B are integers such that 3A+ 2B = 218 and |A−B| is as small as possible, compute
A+B.

Solution 2-1. Note that |A−B| 6= 0 because with A = B, 3A+ 2B is a multiple of 5, but 218 is not a multiple of
5. Suppose there exist integers A and B such that |A−B| = 1. If B = A+ 1, then the given equation becomes
5A + 2 = 218, but this does not result in an integral value for A. On the other hand, if A = B + 1, then the
given equation becomes 5B + 3 = 218, and this yields the solution (A,B) = (44, 43), hence A+B = 87.
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Relay 2-2. Let T = TNYWR. Compute the number of lattice points in the interior of the triangle with vertices
(0, T ), (T, 0), and (0, 0).

Solution 2-2. The following solution assumes that T is a positive integer. (As an exercise, the reader might want
to consider how the solution would change if T were a negative integer or if T were not an integer.) It is easy
to verify that if T = 1 or T = 2, then the answer is 0. So suppose that T ≥ 3. For a fixed value of N with
1 ≤ N ≤ T −2, the points (1, N), (2, N), . . . , (T −N −1, N) all lie in the interior of the triangle. This is a total

of T −N − 1 points. Summing over the possible values of N yields (T − 2) + (T − 3) + · · ·+ 1 = (T−2)(T−1)
2 .

With T = 87, the answer is 3655.

Alternatively, one can apply Pick’s Theorem, which states that for a polygon whose vertices are all lattice points,
K = I+ B

2 −1, where K is the area of the polygon, I is the number of lattice points in its interior, and B is the
number of lattice points on its boundary. For the given triangle, K = 1

2T
2 and B = (T +1)+T +(T −1) = 3T .

Hence I = T 2−3T+2
2 , as established above.

Relay 2-3. Let T = TNYWR. The integers a and b are chosen from the set {1, 2, 3, . . . , T}, with replacement.
Compute the number of ordered pairs (a, b) for which

a+ b = 4036.

Solution 2-3. The answer is the number of ordered pairs of integers (x, 4036−x) for which x and 4036−x are both
in the set {1, 2, 3, . . . , T}. If T < 4036

2 = 2018, then the answer is 0 because the greatest possible sum would be
achieved with the ordered pair (T, T ), but 2T < 4036. If 2018 ≤ T < 4036, the ordered pairs are (4036−T, T ),
(4037− T, T − 1), . . . , (T, 4036− T ); there are T − (4036− T ) + 1 = 2T − 4035 of these ordered pairs. Finally,
if T ≥ 4036, then the answer is 4035 because each of the ordered pairs (1, 4035), (2, 4034), . . . , (4035, 1) has
the sum of its coordinates equal to 4036. Because T = 3655, the desired number of ordered pairs is therefore
2 · 3655− 4035 = 3275.
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12 Super Relay

1. Given that a, b, and c are positive integers such that a + bc = 20 and a + b = 18, compute the least possible
value of abc.

2. Let T = TNYWR. In convex quadrilateral LEOS, LE = EO, LS = SO, and ES and LO intersect in point
J . Given that EJ = 24, JS = 60, and EO = T , compute LS.

3. Let T = TNYWR. For each integer n, let f(n) be the remainder when n2 − 1 is divided by 8. Compute
f(T ) + f(T + 1) + f(T + 2) + f(T + 3).

4. Let T = TNYWR. Compute the shortest distance between the lines y = x+ T and y = x− T .

5. Let T = TNYWR. Compute the value of x for which
√
x+
√
x+ 80 = T .

6. Let T = TNYWR. Jane rolls a fair T -sided die whose faces are numbered from 1 to T inclusive. The
probability that she rolls a multiple of either 2 or 3 is the same as the probability that she rolls a multiple of
either 4, 5, 7, p, q, or r, where p, q, and r are prime numbers and 7 < p < q < r. Compute r.

7. Let T = TNYWR, and let K = T + 3. Compute log4 21 + log4 22 + log4 23 + · · ·+ log4 2K−1 + log4 2K .

15. Compute
∣∣20183 − 3 · 20182 · 2017 + 3 · 2018 · 20172 − 20173

∣∣.
14. Let T = TNYWR. In 4DES, sinD =

1

T
and sinE =

1

20
. Given that DS = 18, compute ES.

13. Let T = TNYWR. A group of T + 60 students compete at an ARML site. At that site, a total of 50 students
got at least one of individual questions 9 and 10 correct, 48 students got question 9 correct, and an astonishing
22 students got question 10 correct! Compute the probability that a randomly selected student from this group
got both questions 9 and 10 correct.

12. Let T = TNYWR, and let K =
1

T
. The complex numbers a and b are the solutions to the equation

x2 + 20x−K = 0, and the complex numbers c and d are the solutions to the equation x2 − 18x+K − 4 = 0.
Compute a2 + b2 + c2 + d2.

11. Let T = TNYWR, and let P be the greatest prime factor of T . Given that a sphere has a surface area of
(P + 3)π, compute the radius of the sphere.

10. Let T = TNYWR. Given that f(x) = −x2 + Tx + c for some real number c and f(20) = 18, compute the
maximum value of f(x), where x ranges over the real numbers.

9. Let T = TNYWR. In the increasing arithmetic sequence a1, a2, a3, . . ., the common difference between
consecutive terms is 4, and a1 = T . Compute the value of n for which an = 2018.

8. Let A be the number you will receive from position 7 and let B be the number you will receive from position 9.
A circular track has a perimeter of A meters. Jasmine and Richard start running clockwise around the track at
the same time and from the same starting position on the track. Jasmine runs at a constant speed and takes
16 seconds to run A meters. Richard also runs at a constant speed and takes 160 seconds to run B meters.
When Jasmine and Richard first meet again at the starting point, Jasmine will have run m laps and Richard
will have run n laps. Compute 20m+ 18n.
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13 Super Relay Answers

1. 51

2. 75

3. 10

4. 10
√
2

5. 18

6. 17

7. 105

15. 1

14. 360

13.
1

21
12. 732

11. 4

10. 342

9. 420

8. 136
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14 Super Relay Solutions

Problem 1. Given that a, b, and c are positive integers such that a+ bc = 20 and a+ b = 18, compute the least
possible value of abc.

Solution 1. Subtract the second equation from the first equation and factor to obtain b(c− 1) = 2. Hence either
(b, c) = (2, 2) or (b, c) = (1, 3). In the former case, a = 18 − 2 = 16, and in the latter case, a = 18 − 1 = 17.
The value of abc is thus minimized when a = 17, b = 1, and c = 3, and abc = 51.

Problem 2. Let T = TNYWR. In convex quadrilateral LEOS, LE = EO, LS = SO, and ES and LO intersect
in point J . Given that EJ = 24, JS = 60, and EO = T , compute LS.

Solution 2. Note that quadrilateral LEOS is a kite, hence ES ⊥ LO. By the Pythagorean Theorem, JO2 =
T 2− 242 and LS2 = OS2 = JO2 +JS2 = T 2− 242 + 602 = T 2 + 3024, hence LS =

√
T 2 + 3024. With T = 51,

LS = 75. (Note: The calculation can be simplified by noting that once a value of T is received, 4EJO is
similar to an 8−15−17 triangle, and 4OJS is similar to a 3−4−5 triangle.)

Problem 3. Let T = TNYWR. For each integer n, let f(n) be the remainder when n2 − 1 is divided by 8.
Compute f(T ) + f(T + 1) + f(T + 2) + f(T + 3).

Solution 3. Note that exactly two elements of {T, T + 1, T + 2, T + 3} are even, and the other two elements of the
set are odd. Similarly, exactly two elements of {T 2 − 1, (T + 1)2 − 1, (T + 2)2 − 1, (T + 3)2 − 1} are even, and
the other two elements of the set are odd. Without loss of generality, assume that T = 4k, for some integer k.
Then f(T ) = 16k2−1 ≡ 7 (mod 8), f(T +1) = (4k)(4k+2) ≡ 0 (mod 8), f(T +2) = 16k2+8k+3 ≡ 3 (mod 8),
and f(T + 3) = (4k + 2)(4k + 4) ≡ 0 (mod 8). Hence the answer is 7 + 0 + 3 + 0 = 10 (independent of T ).

Problem 4. Let T = TNYWR. Compute the shortest distance between the lines y = x+ T and y = x− T .

Solution 4. Let A = (0, T ), B = (0,−T ), and let C be the foot of the perpendicular from A to the line y = x−T .
Note that the two lines are parallel and, because their slopes are 1, they make an angle of inclination of 45◦

with the x-axis. Hence m∠ABC = m∠BAC = 45◦. Because AB = |2T |, the distance between the two lines,
AC, is equal to |T

√
2|. With T = 10, the answer is therefore 10

√
2.

Problem 5. Let T = TNYWR. Compute the value of x for which
√
x+
√
x+ 80 = T .

Solution 5. Rewrite the given equation as
√
x+ 80 = T−√x and square each side to obtain x+80 = T 2−2T

√
x+x.

Thus 2T
√
x = T 2 − 80, hence x =

Ä
T 2−80

2T

ä2
. With T = 10

√
2, the value of x is 18, which checks.

Problem 6. Let T = TNYWR. Jane rolls a fair T -sided die whose faces are numbered from 1 to T inclusive.
The probability that she rolls a multiple of either 2 or 3 is the same as the probability that she rolls a multiple
of either 4, 5, 7, p, q, or r, where p, q, and r are prime numbers and 7 < p < q < r. Compute r.

Solution 6. Equivalently, the number of outcomes that are multiples of 2 or 3 should equal the number of outcomes
that are multiples of 4, 5, 7, p, q, or r. There are bT/2c multiples of 2 and bT/3c multiples of 3. Each of
these counts multiples of 2 and 3, so by the Inclusion-Exclusion Principle, the number of multiples of 2 or 3 is
bT/2c+ bT/3c − bT/6c. Similarly, the number of outcomes that are multiples of 4, 5, 7, p, q, or r is bounded
above by bT/4c+ bT/5c+ bT/7c+ bT/pc+ bT/qc+ bT/rc. Depending on the value of T , this count may need
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to be adjusted in the event that an outcome is a multiple of at least two of the numbers 4, 5, 7, p, q, and r.
However, if T < 20, this will not happen. With T = 18, the number of multiples of 2 or 3 is 9 + 6 − 3 = 12,
and the number of multiples of 4, 5, 7, p, q, or r is 4 + 3 + 2 + 1 + 1 + 1 = 12. The only possible triple (p, q, r)
is (11, 13, 17), hence r = 17.

Problem 7. Let T = TNYWR, and let K = T+3. Compute log4 21+log4 22+log4 23+· · ·+log4 2K−1+log4 2K .

Solution 7. The given expression is equal to

log4

(
21 · 22 · . . . · 2K−1 · 2K

)
= log4

Ä
21+2+···+(K−1)+K

ä
= log4

ÅÄ
41/2
äK(K+1)/2

ã
= K(K + 1)/4

= (T + 3)(T + 4)/4.

With T = 17, the answer is 105.

Problem 15. Compute
∣∣20183 − 3 · 20182 · 2017 + 3 · 2018 · 20172 − 20173

∣∣.
Solution 15. Let a = 2018 and b = 2017. Then the given expression equals

∣∣a3 − 3a2b+ 3ab2 − b3
∣∣ =

∣∣(a− b)3∣∣.
Because a− b = 1, the answer is therefore

∣∣13∣∣ = 1.

Problem 14. Let T = TNYWR. In 4DES, sinD =
1

T
and sinE =

1

20
. Given that DS = 18, compute ES.

Solution 14. By the Law of Sines,
ES

sinD
=

DS

sinE
, so ES = DS · sinD

sinE
= 18 · 20

T
=

360

T
. Because T = 1, the answer

is 360 (and ∠D is a right angle).

Problem 13. Let T = TNYWR. A group of T + 60 students compete at an ARML site. At that site, a total of
50 students got at least one of individual questions 9 and 10 correct, 48 students got question 9 correct, and
an astonishing 22 students got question 10 correct! Compute the probability that a randomly selected student
from this group got both questions 9 and 10 correct.

Solution 13. Let N be the number of students who got both questions 9 and 10 correct. By the Inclusion-

Exclusion Principle, it follows that 50 = 48 + 22−N , so N = 20. Thus the desired probability is
20

T + 60
. With

T = 360, this gives an answer of 1
21 .

Problem 12. Let T = TNYWR, and let K =
1

T
. The complex numbers a and b are the solutions to the equation

x2 + 20x−K = 0, and the complex numbers c and d are the solutions to the equation x2 − 18x+K − 4 = 0.
Compute a2 + b2 + c2 + d2.

Solution 12. By Vieta’s Formulas, a+b = −20, ab = −K, c+d = 18, cd = K−4. Note also that a2+b2+c2+d2 =
(a+b)2+(c+d)2−2ab−2cd = (−20)2+182−2(−K)−2(K−4) = 400+324+2K−2K+8 = 732 (independent
of K and T ).
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Problem 11. Let T = TNYWR, and let P be the greatest prime factor of T . Given that a sphere has a surface
area of (P + 3)π, compute the radius of the sphere.

Solution 11. Let r be the radius of the sphere. Then 4πr2 = (P + 3)π, so r =

√
P + 3

2
. With T = 732 = 2 ·32 ·61,

P = 61, and the answer is
√
64
2 = 4.

Problem 10. Let T = TNYWR. Given that f(x) = −x2 + Tx + c for some real number c and f(20) = 18,
compute the maximum value of f(x), where x ranges over the real numbers.

Solution 10. Plug in x = 20 to obtain 18 = f(20) = −400+20T +c, hence c = 418−20T . Complete the square in

the quadratic polynomial to obtain f(x) = −
(
x− T

2

)2
+ T 2

4 +418−20T . When x ranges over the real numbers,

f will be maximized when x = T
2 because −

(
x− T

2

)2
is negative except when x = T

2 . Thus the maximum value

of f is T 2

4 + 418− 20T . With T = 4, this yields the answer of 342.

Problem 9. Let T = TNYWR. In the increasing arithmetic sequence a1, a2, a3, . . ., the common difference
between consecutive terms is 4, and a1 = T . Compute the value of n for which an = 2018.

Solution 9. The desired value of n satisfies the equation T + 4(n− 1) = 2018, thus n =
2022− T

4
. With T = 342,

this yields n = 420.

Problem 8. Let A be the number you will receive from position 7 and let B be the number you will receive from
position 9. A circular track has a perimeter of A meters. Jasmine and Richard start running clockwise around
the track at the same time and from the same starting position on the track. Jasmine runs at a constant speed
and takes 16 seconds to run A meters. Richard also runs at a constant speed and takes 160 seconds to run B
meters. When Jasmine and Richard first meet again at the starting point, Jasmine will have run m laps and
Richard will have run n laps. Compute 20m+ 18n.

Solution 8. Note that Jasmine takes 16 seconds to run a lap around the track, whereas Richard takes 160
B · A

seconds to run a lap around the track. Let ` = lcm(16, 160A/B). Then Jasmine and Richard will first meet
again at the starting point after ` seconds have elapsed. At that time, Jasmine will have run a total of `

16 laps

and Richard will have run a total of `
160A/B laps. With A = 105 and B = 420, it follows that ` = 80 and

therefore m = 80
16 = 5 and n = 80

40 = 2. Therefore 20m+ 18n = 100 + 36 = 136.
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15 Tiebreaker Problems

Problem 1. The increasing infinite arithmetic sequence of integers x1, x2, x3, . . . contains the terms 17! and 18!.
Compute the greatest integer X for which X! must also appear in the sequence.

Problem 2. Let S1 = {1, 2, 3, 4}, S2 = {3, 4, 5, 6}, and S3 = {6, 7, 8}. Compute the number of sets H that satisfy
both of the following properties:

• H ⊆ {1, 2, 3, 4, 5, 6, 7, 8};
• each of H ∩ S1, H ∩ S2, and H ∩ S3 is non-empty.

Problem 3. Tom writes down the integers from 1 to 100, inclusive, on a chalkboard and then erases every number
that contains a prime digit. Compute the sum of the digits that remain on the chalkboard.
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16 Tiebreaker Answers

Answer 1. 32

Answer 2. 201

Answer 3. 337
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17 Tiebreaker Solutions

Problem 1. The increasing infinite arithmetic sequence of integers x1, x2, x3, . . . contains the terms 17! and 18!.
Compute the greatest integer X for which X! must also appear in the sequence.

Solution 1. Because the sequence contains 17! and 18!, its common difference must divide M = 18! − 17! =
17 · 17!. Note that the set of integers appearing in all such sequences forms an arithmetic sequence with
first term 17! and common difference M . The problem is thus equivalent to finding the greatest integer X
such that X! = 18! + kM for some integer k. Divide both sides of the previous equation by 17!, to obtain
X(X − 1)(X − 2) · . . . · 19 · 18 = 18 + 17k, or in other words,

X(X − 1)(X − 2) · . . . · 19 · 18 ≡ 18 (mod 17). (∗)

Note that modulo 17, the left-hand side of (∗) is equal to (X − 17)!, hence the problem reduces to finding the
greatest solution to (X − 17)! ≡ 1 (mod 17). There is no such solution with X > 33, because then (X − 17)! is
divisible by 17. Also, if X = 33, then by Wilson’s Theorem, 16! ≡ −1 (mod 17) because 17 is prime. However,
16! = 15! · 16 ≡ 15! · (−1) ≡ −1 (mod 17), hence 15! ≡ 1 (mod 17). Thus the desired value of X is 32.

Problem 2. Let S1 = {1, 2, 3, 4}, S2 = {3, 4, 5, 6}, and S3 = {6, 7, 8}. Compute the number of sets H that satisfy
both of the following properties:

• H ⊆ {1, 2, 3, 4, 5, 6, 7, 8};
• each of H ∩ S1, H ∩ S2, and H ∩ S3 is non-empty.

Solution 2. There are a total of 28 subsets of {1, 2, 3, 4, 5, 6, 7, 8}. Proceed indirectly and consider counting the
sets H such that at least one of H ∩ S1, H ∩ S2, and H ∩ S3 is empty. Let Na be the number of subsets H of
{1, 2, 3, 4, 5, 6, 7, 8} in which H∩Sa is empty. Define Na,b and Na,b,c similarly. Then, by the Inclusion-Exclusion
Principle, the answer is

28 −
(
N1 +N2 +N3 − (N1,2 +N1,3 +N2,3) +N1,2,3

)
.

Because |S1| = 4, it follows that N1 = 28−4 = 16. Similarly, N2 = 16 and N3 = 32. There are 6 elements in
S1 ∪ S2, thus N1,2 = 28−6 = 4. Similarly, N1,3 = 2 and N2,3 = 4. Finally, N1,2,3 = 1 because ∅ is the only
subset of {1, 2, 3, 4, 5, 6, 7, 8} that has an empty intersection with each of S1, S2, and S3. Thus the answer is
256−

(
16 + 16 + 32− (4 + 2 + 4) + 1

)
= 201.

Alternate Solution: Define a set H with the desired properties to be a hitting set. Count the number of
hitting sets H according to the possible sizes of the set H.
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|H| Number of hitting sets H

0, 1 0: A set H with |H| ≤ 1 cannot have a non-empty intersection with each of
the three sets S1, S2, and S3 because there is no element common to all three
of these sets.

2 8: Note that |H ∩ S3| = 1. If 6 ∈ H, then because H ∩ S1 6= ∅, There are
4 possible elements of S1 that could belong to H. If 6 /∈ H, then there are
2 choices of the element of S3 that could belong to H (7 or 8) and there are
two choices of the element of S1 ∩ S2 that could belong to H (3 or 4). Thus if
6 /∈ H, then there are 2 · 2 = 4 possible hitting sets H, for a total of 4 + 4 = 8
hitting sets of size 2.

3
(
8
3

)
− 18 = 38: Note that every subset H of {1, 2, 3, 4, 5, 6, 7, 8} with |H| = 3

will have a non-empty intersection with at least two of the sets S1, S2, and
S3. There are 4 sets H, each of which has an empty intersection with S1; these
are the

(
4
3

)
subsets of {5, 6, 7, 8} of size 3. There are 4 sets H, each of which

has an empty intersection with S2; these are the
(
4
3

)
subsets of {1, 2, 7, 8} of

size 3. Finally, there are 10 sets H, each of which has an empty intersection
with S3; these are the

(
5
3

)
subsets of {1, 2, 3, 4, 5} of size 3. Thus there are(

8
3

)
− (4 + 4 + 10) = 38 hitting sets of size 3.

4
(
8
4

)
− 7 = 63: Note that every subset H of {1, 2, 3, 4, 5, 6, 7, 8} with |H| = 4 will

have a non-empty intersection with at least two of the sets S1, S2, and S3. There
is 1 set H that has an empty intersection with S1: {5, 6, 7, 8}. There is 1 set
H that has an empty intersection with S2: {1, 2, 7, 8}. Finally, there are 5 sets
H, each of which has an empty intersection with S3: {1, 2, 3, 4}, {1, 2, 3, 5},
{1, 2, 4, 5}, {1, 3, 4, 5}, and {2, 3, 4, 5}. Thus there are

(
8
4

)
− (1 + 1 + 5) = 63

hitting sets of size 4.

5
(
8
5

)
−1 = 55: Any set H with |H| = 5 will intersect each of S1 and S2 in at least

one element. The only set of size 5 that does not intersect S3 is {1, 2, 3, 4, 5},
hence there are

(
8
5

)
− 1 = 55 hitting sets of size 5.

6
(
8
6

)
= 28: Because each of S1,S2,S3 has at least 3 elements, a 6-element hitting

set will have a non-empty intersection with each of S1,S2, and S3.

7
(
8
7

)
= 8: Because each of S1,S2,S3 has at least 3 elements, a 7-element hitting

set will have a non-empty intersection with each of S1,S2, and S3.

8 1: The only possible set is {1, 2, 3, 4, 5, 6, 7, 8}, which clearly works.

From the above analysis, the total number of hitting sets is 0 + 0 + 8 + 38 + 63 + 55 + 28 + 8 + 1 = 201.

Note: As in the alternate solution, a set H with the property that it has a non-empty intersection with
each set in a collection of sets S1,S2, . . . ,Sn is known as a hitting set. Intuitively, this name makes sense
because H “hits” (i.e., intersects) each set Si such that |H∩Si| ≥ 1. The following general problem is believed
to be computationally hard in the sense that there are no known efficient algorithms for answering it.

Given a collection of n sets S1,S2, . . . ,Sn and a positive integer k, does there exist a hitting set H
with |H| ≤ k?

Problem 3. Tom writes down the integers from 1 to 100, inclusive, on a chalkboard and then erases every number
that contains a prime digit. Compute the sum of the digits that remain on the chalkboard.

Solution 3. Every one- or two-digit integer can be represented as T U where 0 ≤ T,U ≤ 9 (and for one-digit
integers, T = 0). The prime digits are 2, 3, 5, and 7, so Tom will erase the 40 numbers of the form 2U , 3U ,
5U , and 7U . After that, consider a fixed value of T , not equal to 2, 3, 5, or 7. Tom will erase the numbers
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T 2, T 3, T 5, and T 7. Among the six numbers remaining with tens digit T , the sum of their units digits is
0 + 1 + 4 + 6 + 8 + 9 = 28, and the sum of their tens digits is 6T . There are six such values of T , so the sum of
all the digits of the remaining one- and two-digit integers is 6 ·28 + 6(0 + 1 + 4 + 6 + 8 + 9) = 12 ·28 = 336. This
sum includes the “number” 00, but the zeros do not affect the sum. Finally, because the number 100 remains,
the answer is 336 + 1 = 337.
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