
2018 ARML Local Solutions

Team Round Solutions

T-1 A sphere with surface area 2118π is circumscribed around a cube and a smaller sphere is
inscribed in the cube. Compute the surface area of the smaller sphere.

Solution: If the cube has side length D, the sphere inscribed inside the cube has
diameter D, and the circumscribed sphere has diameter

√
3D. The surface area of a cube

of side length D is πD2, so the inscribed sphere has surface area 1
3

of the circumscribed

one, so the answer is 706π .

T-2 REBS is a square of side length 3. If SU = UO = OR = RT = TX = XE = ED =
DI = IB = BM = MA = AS = 1, compute the sum of the areas of the distinct
rectangles whose vertices consist of four of the points A,M,B, I,D,E,X, T,R,O, U, S.

Solution: The other eight points given are the trisection points for the edges of REBS.
There are rectangles of five different dimensions: 3 × 1 (there are six), 3 × 2 (there are
four), 3 × 3 (there’s one),

√
2 ×
√

8 (there are two), and
√

5 ×
√

5 (there are two). The

sum of the areas is 6× 3 + 4× 6 + 1× 9 + 2× 4 + 2× 5 = 69 .

T-3 Compute the value of x for which log8(log4 x) = log64(log2 x).

Solution: Let x = 2u, then log2 x = u and log4 x = log2 x
log2 4

= u
2
. Then log8(u/2) =

log64(u) = log8(u)
log8 64

= log8(u)
2
→ log8(u) − log8(2) = log8(u)

2
→ log8(u)

2
= 1

3
→ log8(u) = 2

3
→

u = 4→ x = 16 .

T-4 For non-negative integers A and B, with A ≥ B, let A ? B denote the number formed
by the concatenation of (A + B), (A − B), and (A × B). For example, 7 ? 5 = 12235.
Compute the number of ordered pairs (A,B), 1 ≤ B ≤ A ≤ 9, such that A ? B contains
at most three distinct digits (to clarify, the example contains four distinct digits).

Solution: The resulting number will be at most five digits for single-digit values of A
and B. The cases that satisfy the conditions of the problem are:

– Three digits long: The sum, difference, and product all being single digits: this
happens for B = 1, 1 ≤ A ≤ 8, B = 2, 2 ≤ A ≤ 4, and B = 3, A = 3.

– Four digits: The sum must be a single digit and will be distinct from the difference.
Therefore, the product must share a digit with either the sum or the difference. This
only occurs when A = 4 and B = 3 (7112).

– Five digits: The tens digit of the sum is always one. If the difference is also one,
then either the sum is 11 (6 ? 5 = 11130), or the sum shares a digit with the product
(8 ? 7 = 15156 and 9 ? 8 = 17172). If the difference is not one, then either the sum
is 11 and the product contains a one (9 ? 2 = 11718) or the difference and product
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contain a common digit (8?2 = 10616), or the sum and product contain two common
digits (9 ? 9 = 18081), or the sum, difference, and product contain a common digit
(9 ? 5 = 14445) .

Counting the cases, the answer is 20 .

T-5 Compute the greatest integer n for which (6!)n is a factor of 60!.

Solution: (6!)n = 24n32n5n. Therefore, we determine the largest power of 2, 3, and 5
that divides 60!. In general, the largest power of p that divides k! is

∑∞
j=1b

k
pj
c. When

p = 2, this sum is 30 + 15 + 7 + 3 + 1 = 56, when p = 3, this sum is 20 + 6 + 2 = 28, and
when p = 5, the sum is 12 + 2 = 14. Accordingly, 14 is largest power of 6! that divides
60! evenly.

T-6 The ARML Local staff have ranked each of the 10 individual problems in order of difficulty
from 1 to 10. They wish to order the problems such that the problem with difficulty i
is before the problem with difficulty i + 2 for all 1 ≤ i ≤ 8. Compute the number of
orderings of the problems that satisfy this condition.

Solution: Any acceptable ordering of the problems must have the odd numbered
problems and even numbered problems in order of increasing difficulty. Therefore, it is
merely a question of how many ways two sequences of 5 numbers can be interleaved.
There are C(10, 5) = 252 ways to pick the positions of the questions of odd difficulty,
and then a unique ordering of the odd difficulty questions in those positions and the even
difficulty questions in the positions left over.

T-7 Let ABC be a triangle with AB = 5, BC = 12, and an obtuse angle at B. It is given
that there exists a point P in plane ABC for which ∠PBC = ∠PCB = ∠PAB = γ,
where γ is an acute angle satisfying tan γ = 3

4
. Compute sin∠ABP .

Solution: Note that by Law of Sines on 4ABP and 4CBP ,

AB

sin∠APB
=

PB

sin γ
=

BC

sin∠BPC
,

from which

sin∠APB =
AB

BC
· sin∠BPC =

5

12
· sin 2γ =

5

12
· 24

25
=

2

5
.

It follows that

sin∠ABP = sin(∠BAP + ∠APB)

= sin∠BAP cos∠APB + sin∠APB cos∠APB

=
2

5
· 4

5
+

3

5
·
√

21

5
=

8 + 3
√

21

25
.

T-8 Suppose a, b, and c are real numbers such that a, b, c and a, b+1, c+2 are both geometric
sequences in their respective orders. Compute the smallest possible value of (a+ b+ c)2.



Solution: Note that the conditions imply b2 = ac and (b+ 1)2 = a(c+ 2). Subtracting

yields 2b+ 1 = 2a, so b+ 1
2

= a. Now recall that from the first equation c = b2

a
, so

a+ b+ c = a+

(
1

2
+ a

)
+

(1
2

+ a)2

a
= 3a+

1

4a
− 3

2
.

If a is positive, then this expression is at least 2
√

4
3
− 3

2
=
√

3− 3
2

by the AM-GM inequality;

in a similar vein, a is negative this expression is at most −
√

3 − 3
2
. From both of these

cases we conclude that the smallest possible value of (a+b+c)2 is (
√

3− 3
2
)2 = 21

4
− 3
√

3 .

T-9 Circles ω1 and ω2 have radii 5 and 12 respectively and have centers distance 13 apart.
Let A and B denote the intersection points of ω1 and ω2. A line ` passing through A
intersects ω1 again at X and ω2 again at Y such that ∠ABY = 2∠ABX. Compute XY .

Solution: Denote by O1 and O2 the centers of ω1 and ω2 respectively. Then O1A
2 +

O2A
2 = O1O

2
2 from the lengths given in the problem statement, so O1A ⊥ O2A. Now set

∠XAO1 = α and ∠Y AO2 = β; then α + β = 90◦. Furthermore, angle chasing reveals

∠ABX = 1
2
∠AO1X = 90◦ − α and ∠ABY = 1

2
∠AO2Y = 90◦ − β,

and so 90◦ − β = 2(90◦ − α) ⇒ 2α − β = 90◦. Solving this system of equations yields
α = 60◦ and β = 30◦, so

XY = XA+ AY = 2 · 5 cos 60◦ + 2 · 12 cos 30◦ = 5 + 12
√

3 .

T-10 Compute the sum of all possible values of a + b, where a and b are integers such that
a > b and a2 − b2 = 2016.

Solution: The condition in the problem to be satisfied is equivelent to (a− b)(a+ b) =
2016. Note that a − b > 0, so a + b > 0 also. For d = a + b, note that d | 2016, and
furthermore d and 2016/d must have the same parity. It follows that d = 2a3b7c for
a ∈ {1, 2, 3, 4}, b ∈ {0, 1, 2}, and c ∈ {0, 1}; the requested sum is

(2 + 22 + 23 + 24)(1 + 3 + 32)(1 + 7) = 30 · 13 · 8 = 3120 .

T-11 If u and v are complex numbers such that u+ v = 9 and u3 + v3 = 81, compute u2 + v2.

Solution: 81 = (u + v)(u2 − uv + v2) → (u2 − uv + v2) = 9. u + v = 9 → u2 +
2uv + v2 = 81. Combining the two equations to eliminate the u2 and v2 terms gives
3uv = 72→ uv = 24, so u2 + v2 = 9 + uv = 33 .

T-12 On the planet ARMLia, there are three species of sentient creatures: Trickles, who count
in base 3, Quadbos, who count in base 4, and Quinters, who count in base 5. One thing
all three species agree on is the magic of the positive integer Zelf, which ends in the digits
”11” when represented in all three bases. Compute the least possible value (in base 10)
of Zelf.



Solution: Let z be the least possible value of Zelf. This becomes a Chinese Remainder
Theorem problem, where z ≡ (b + 1) mod b2 for each base b. Looking first at Trickles
and Quadbos, z ≡ 4 mod 9 and z ≡ 5 mod 16.

Using the Euclidean algorithm, we establish that 4 × 16 − 7 × 9 = 1, so z ≡ 4 ×
4 × 16 − 5 × 7 × 9 ≡ −59 mod 144 ≡ 85 mod 144. Additionally, z ≡ 6 mod 25, and
4×144−23×25 = 1, so z ≡ 4×144×6−23×25×85 ≡ 3456−48875 = −45419 ≡ 1381
mod 3600 .

T-13 Compute the number of ordered pairs of integers (a, b, c) with a ≥ b ≥ c such that a, b,
and c are the side lengths of a non-degenerate triangle with perimeter 218.

Solution: To satisfy the triangle inequality, a > b + c. The longest side a can take
values between 108 (108− 108− 2, 108− 107− 3, . . . 108− 55− 55) and 73 (73− 73− 72).
For a fixed value of a, b can vary between d218−a

2
e and a, inclusive, while c is fixed given

the choice of a and b (c = 218− a− b).

108∑
a=73

a− d218− a
2
e+ 1 =

108∑
a=73

a−
108∑
a=73

d218− a
2
e+

108∑
a=73

1

= 181× 18− (73 + 72 + 72 + · · ·+ 56 + 56 + 55) + 36

= 3258− 2304 + 36 = 990

T-14 Compute the sum of the real roots of f(x) = x6 + 3x4 − 2018x3 + 3x2 + 1.

Solution: If f(x) = 0, then 2018x3 = x6 + 3x4 + 3x2 + 1 = (x2 + 1)3. Dividing both

sides by x3 gives 2018 = (x
2+1
x

)3 = (x+ 1
x
)3. By symmetry, this means that if x is a root,

so is 1
x
, so the sum of the real roots is (x+ 1

x
) =

3
√

2018 .

T-15 Place in the 10× 10 grid of cells below one 4× 4 square, two 3× 3 squares, three 2× 2
squares, and four 1× 1 squares such that:

– All square sides are parallel to boundaries of the grid.
– No squares overlap nor share a common boundary, not even a corner point.
– The total number of 1× 1 cells covered by squares in each row and column is equal

to the number to the right or below the row or column, respectively. The numbered
or lettered cells may not be covered by tiles.

Enter on your answer sheet the letter coordinates (given in the first row and column)
of the four cells containing the 1× 1 squares, for example, if the four corners of the grid
contained the 1× 1 tiles, you would enter AK, JK, AT , and JT .



A B C D E F G H I J

3 6 4 8 7 3 2 3 7 7

K
L
M
N
O
P
Q

R
S
T

3
2
7
4
7
7
3
5
7
5

Solution: The only consecutive rows and columns that contain 4 or more filled squares
are M to P and B to E, respectively, so the 4 × 4 must lie there. Additionally, no other
filled squares are in A-F × L-Q, and no other filled squares in column C or row N. Because
column D contains eight filled squares, DK must be filled in with a 1× 1 and D-F × R-T
must be filled in with one of the 3 × 3 squares. This eliminates EK and FK from being
filled in, as the conditions on columns E and F are now satisfied, as well as G × Q-T, as
those squares are adjacent to the 3× 3. The only way that rows O and P can contain 7
filled in squares is if the other 3 × 3 square is at H-J × O-Q, which leaves the only way
to satisfy the condition on row R to place a 2× 2 square at A-B × R-S, and then 2× 2
squares at I-J × S-T and I-J × L-M. This leaves the positions of the other three 1 × 1

squares at AK, GK, and GM. The answer is AK, DK, GK, and GM . The fully filled in

solution is below.

A B C D E F G H I J

3 6 4 8 7 3 2 3 7 7

K
L
M
N
O
P
Q

R
S
T

3
2
7
4
7
7
3
5
7
5

X X X

X
X
X

X
XX X X X

X X X X
X X X X
X X X X

X
X
X

X
X
X

X
X
X

X
X

X
X

X
X

X
X

X
X
X

X
X
X

X
X
X



Individual Round Solutions

I-1 The number N = 212− 1 is the product of 5 (not necessarily distinct) prime numbers p1,
p2, p3, p4, and p5. Compute p1 + p2 + p3 + p4 + p5.

Solution: 212 − 1 = (26 − 1)(26 + 1) = (23 − 1)(23 + 1)(26 + 1) = 7 × 9 × 65 =

3× 3× 5× 7× 13. The sum of the primes is 31 .

I-2 If a0, a1, a2, . . . is an arithmetic sequence and 18a20 + 20 = 20a18 + 18, compute a0.

Solution: Let d be the common difference of the sequence, then a20 = a18 + 2d →
18(a18+2d)+20 = 20a18+18→ 2a18 = 36d+2 or a18 = 18d+1. Since a18 = a0+18d, the

answer is 1 . An alternate solution is that since the sequence isn’t specified, you could
assume it is a constant sequence, in which case 18a0 + 20 = 20a0 + 18, and the answer
follows.

I-3 If x and y are real numbers such that 2x+ y = 4 and 5x+ 3y = 9, compute the value of
16x+ 9y.

Solution: Summing three times the third equation and two times the second, you get
that 3(2x+ y) + 2(5x+ 3y) = 3× 4 + 2× 9→ 16x+ 9y = 12 + 18 = 30 .

I-4 For each real number x, let f(x) = sin(πx
3

) + cos(πx
2

). Compute the least p > 0 such that
f(x+ p) = f(x) for all real x.

Solution: The first summand sin(πx
3

) has period 6, since sin(x) has period 2π. Simi-
larly, the second summand has period 4. The period of the sum has period equal to the
least common multiple of the periods of the two summands, which is 12 .

I-5 Compute the number of triples of consecutive positive integers less than 50 whose product
is both a multiple of 20 and 18.

Solution: The least common multiple of 20 and 18 is 180. One of the values in the
triple must be a multiple of 5 (say m), and then if the greatest common divisor of m and
180 is d, the product of the other two terms must be a multiple of 180

d
. This leads to the

following triples that satisfy the condition:
– m = 10, d = 18, and the sequence 8,9,10
– m = 20, d = 9, and the sequence 18,19,20
– m = 35, d = 36, and the sequences 34,35,36 and 35,36,37
– m = 45, d = 4, and the sequences 43,44,45 and 44,45,46
Therefore, the answer is 6 .

I-6 Suppose that x is a complex number that satisfies x6 + x5 + x4 + x3 + x2 + x + 1 = 0.
Compute the product x20 · x18 · x2 · x0 · x1 · x8.



Solution: The left hand side of the equation is equal to x7−1
x−1 , so the values that satisfy

the equation are the seventh roots of unity not equal to 1. x20 · x18 · x2 · x0 · x1 · x8 = x49,
so for any seventh root of unity, its 49th power will be 1 .

I-7 Let S = {1, 2, 3, 4, 5, 6}. Compute the number of invertible 2 × 2 matrices with entries
that are distinct elements of S.

Solution: There are 6× 5× 4× 3 = 360 2× 2 matrices with entries that are distinct

elements of S. If M =

(
a b
c d

)
, M is not invertible if and only if ad = bc. There

are two sets of pairs of distinct elements of S with equal products, 1 × 6 = 2 × 3 and
2× 6 = 3× 4. For each set of pairs, any of the four values can be equal to a, which then
sets the corresponding value in d, and then the other pair can fill the remaining positions
in two ways in M . Therefore, sixteen of the matrices are non-invertible, and the answer
is 360− 16 = 344 .

I-8 Let ABCD be a rectangle with AB = 15 and BC = 19. Points E and F are located
inside ABCD such that quadrilaterals AECF and BEDF are both parallelograms with
areas 107 and 88 respectively. Compute the maximum value of EF .

Solution: Note that since AECF is a parallelogram, EF passes through the midpoint
of AC, which just so happens to be the center of the rectangle ABCD. Embed the
figure into a coordinate system with the origin the center of ABCD, and WLOG set
A = (−19

2
,−15

2
), B = (−19

2
, 15

2
), C = (19

2
, 15

2
), and D = (19

2
,−15

2
). Let E = (x, y) (WLOG

assume that E is clockwise from A in AECF ), so that F = (−x,−y). Using the Shoelace
theorem on parallelogram AECF gives:

107 = [AECF ] =
|−19

2
y + 15

2
x+ −19

2
y + 15

2
x− (−15

2
x+ 19

2
y + −15

2
x+ 19

2
y)|

2
= |15x− 19y|.

Applying similar reasoning to BEDF yields the equation |15x+ 19y| = 88.
Assuming WLOG that y > 0, there are two possible cases: either 15x − 19y = −107

and 15x+ 19y = −88 (which has the solution x = −13
2

, y = 1
2
) or 15x− 19y = −107 and

15x + 19y = 88 (which has the solution x = −19
30

, y = 195
38

). EF = 2
√
x2 + y2, and the

greater value occurs in the first case, where EF = 2
√

(−13
2

)2 + (1
2
)2 =

√
170 .

I-9 Compute the number of positive integers N between 1 and 100 inclusive have the property
that there exist distinct divisors a and b of N such that a+ b is also a divisor of N .

Solution: First note that by scaling downward we may assume gcd(a, b) = 1. This
implies gcd(a, a + b) = 1 and gcd(b, a + b) = 1, so N in fact is divisible by ab(a + b).
We now compute numbers of that form which are ≤ 100 and remove all the ones which
are multiples of any others. This leaves 6, 20, 56, and 70 as the only four possibilities
(most of the other numbers are multiples of six). It thus suffices to compute the number



of integers between 1 and 100 which are multiples of at least one of these four numbers.
There are b100

6
c = 16 multiples of six between 1 and 100. Then there are four more

multiples of 20 (20, 40, 80, 100). Including 56 and 70 gives 22 total integers.

I-10 It is given that there exist real numbers a0, . . . , a18 such that

sin2(10x)

sin2(x)
= a0 + a1 cos(x) + a2 cos(2x) + · · ·+ a18 cos(18x)

for all x with sinx 6= 0. Compute a20 + a21 + · · ·+ a218.

Solution: Recall that sin t = eit−e−it

2
for all t. Thus

sin(10x)

sin(x)
=
e10ix − e−10ix

eix − e−ix
= e9ix + e7ix + · · ·+ e−7ix + e9ix

for all x. This means that

sin2(10x)

sin2(x)
=
(
e9ix + e7ix + · · ·+ e−7ix + e−9ix

)2
=
(
e18ix + e−18ix

)
+ 2

(
e16ix + e−16ix

)
+ · · ·+ 9

(
e2ix + e−2ix

)
+ 10

= 2 cos(18x) + 4 cos(16x) + · · ·+ 18 cos(2x) + 10.

The requested answer is 102 + (22 + 42 + · · ·+ 182) = 1240 .



Relay Round Solutions

R1-1 Compute the sum of the values of x such that x(x−4)
2

= x16.

Solution: There are three cases where the equality holds: either the exponents are
equal ((x − 4)2 = 16 → x = 0 or 8), or the base x = 0 or 1. The other possibility is

x = −1 if the exponent is even, but (−5)2 is odd. The answer is 9 .

R1-2 Let T = TNYWR. Compute the remainder when
∑3

i=1(x− 4i)(4−i) is divided by x− T .

Solution: The sum expands to (x− 4)3 + (x− 8)2 + (x− 12) which can be rewritten
as ((x− T ) + (T − 4))3 + ((x− T ) + (T − 8))2 + ((x− T ) + (T − 12)) which when divided

by x− T leaves (T − 4)3 + (T − 8)2 + (T − 12) = 53 + 12 − 3 = 123 .

R2-1 Leah rolls a fair standard six-sided die three times. Compute the probability that the
product of the three rolls is prime.

Solution: The product of the three rolls is prime if and only if two of the rolls are 1
and one of the rolls is 2, 3, or 5. There are nine sequences of three rolls that satisfy these

conditions out of 63, so the probability is 9
216

= 1
24

.

R2-2 Let T = TNYWR. Compute the greatest integer N such that 8NT < 4.

Solution: Taking the logarithm (base-2) of both sides becomes 3NT < 2→ N < 2
3T

.

As T = 1
24

, N < 16, which means the answer is 15 .

R2-3 Let T = TNYWR. Compute the sum of the perimeters of all distinct rectangles with
integer side lengths and area T .

Solution: Let the side lengths of the rectangle be x and y, and WLOG, x ≤ y. The
area of the rectangle is xy and the perimeter is 2x + 2y. Since T = 15, there are two
pairs of factors (x, y) such that x ≤ y and xy = 15: (1, 15) and (3, 5). The sum of the

perimeters is 32 + 16 = 48 .

R3-1 Compute the sum of all prime numbers p such that p2018 + p2019 is a perfect square.

Solution: Factoring out p2018, we see that the value is a perfect square if and only if
1 + p = k2 for some integer k. p = k2− 1 = (k− 1)(k+ 1), so p is prime only when k = 2,

or p = 3 .

R3-2 Let T = TNYWR. Compute the number of integers in the domain of the function
f(x) =

√
log((2− x)(x+ T )).

Solution: In order for f(x) to be defined, log((2− x)(x+ T ) ≥ 0→ (2− x)(x+ T ) ≥
1 → (x − 2)(x + T ) ≤ 1 → x2 + (T − 2)x − (2T − 1) ≤ 0. As T = 3, x2 + x − 5 ≤ 0 →



−1−
√
21

2
≤ x ≤ −1+

√
21

2
. The set of integers that satisfy these inequalities are −2 ≤ x ≤ 1,

so the answer is 4 .

R3-3 Let T = TNYWR. Compute the number of ordered triplets (a, b, c) such that 1 ≤
a, b, c ≤ T and a+ b+ c is odd.

Solution: There are T 3 triplets in total. If T is even, there are an equal number of
triplets that have even and odd sums, so the answer is 43

2
= 32 .

R3-4 Let T = TNYWR. The lengths of the two perpendicular legs of a right triangle sum to
T . A circle of radius r is tangent to all three sides of the triangle, and a circle of radius
R passes through all three vertices of the triangle. Compute r +R.

Solution: The inradius of a right triangle with legs a and b is a+b−
√
a2+b2

2
. The radius

the circumcircle is
√
a2+b2

2
, their sum is a+b

2
= T

2
= 16 .

R3-5 Let T = TNYWR. Compute the number of integers between 100 and 999 inclusive
whose digits sum to T that are not multiples of 5.

Solution: If k = X Y Z. Let A(n) be the number of pairs of digits X Y that sum to
n. Note that A(n) = n if T ≤ 9 and 19− n for 10 ≤ T ≤ 18, and 0 otherwise. Ignoring
the multiples of 5, the total number of three digit numbers is A(T − 1) + A(T − 2) +
A(T − 3) +A(T − 4) +A(T − 6) +A(T − 7) +A(T − 8) +A(T − 9). As T = 16, the sum

is 4 + 5 + 6 + 7 + 9 + 9 + 8 + 7 = 55 .

R3-6 Let T = TNYWR. The number of subsets of size N of the letters in the word TEAM-
WORK that do not contain all of the vowels (A, E, and O) is T . Compute N .

Solution: The total number of subsets of size N is
(
8
N

)
. Of them,

(
N
N−3

)
contain all

of the vowels, so T =
(
8
N

)
−
(
N
N−3

)
. Since T = 55, N = 3 .



Tiebreaker Solution

TB For all nonnegative integers c, let f(c) denote the unique real number x satisfying the
equation

x5 + x4 − 48

x9 − 1
= c.

Compute f(0)f(1)f(2) · · · f(47).

Solution: Rewrite the original condition as Pc(x) := cx9−x5−x4 +(48− c) = 0. Now
remark that

P48−c(x) = (48− c)x9 − x5 − x4 + c = x9Pc(
1
x
);

this means that the roots of Pc(x) and P48−c(x) (which are nonzero since c 6= 48) are
reciprocals of each other, so f(c)f(48− c) = 1 for any c. Now just compute f(0) = 2 and

f(24) = −1; this gives the final answer as −2 .


