2018 ARML Local Contest: Sponsored by Star League

Photocopying Instructions

Make one copy of the whole packet for each team. It contains:
1 copy of the Team Score Sheet
1 copy of the Team Round Answer Sheet
6 copies of the Team Round (2 pages)
1 copy of the Individual Round questions (for proctor)
6 copies of each Individual Round pair
1 copy of each Relay Round Sheet (6 pages for each round)
1 copy of the Relay Round Answer Sheets
(Cut out the 12 miniature answer sheets)
5 copies of the Tiebreaker Question (make more as needed)
Notes:
No calculators are allowed for any round.
Make sure copious scratch paper is available.
Thank you so much for coordinating ARML Local.

2018 ARML Local Contest: Sponsored by Star League

Team Score Sheet
Team Name:
Team Round (4 pts per correct answer, 60 max.)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	Tot

Individual Round (1 pt per correct answer, 60 max.)

Student Names	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Tot
1.											
2.											
3.											
4.											
5.											
6.											
Totals											

Relay Round

(Round 1: 3x $2 \mathrm{pts} / 1 \mathrm{pt}$. Round 2: $2 \mathrm{x} 4 \mathrm{pts} / 2 \mathrm{pts}$, Round 3: 1x $6 \mathrm{pts} / 3 \mathrm{pts}$. 20 points max.)

Relay Round/Team	$1 / 1$	$1 / 2$	$1 / 3$	$2 / 1$	$2 / 2$	3	Total
Score							

2018 ARML Local Contest: Sponsored by Star League
Team Round Answer Sheet
Team Name:

Question Number	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
15	

2018 ARML Local Team Round (45 minutes)

T-1 A sphere with surface area 2118π is circumscribed around a cube and a smaller sphere is inscribed in the cube. Compute the surface area of the smaller sphere.

T-2 $R E B S$ is a square of side length 3 . If $S U=U O=O R=R T=T X=X E=E D=D I=$ $I B=B M=M A=A S=1$, compute the sum of the areas of the distinct rectangles whose vertices consist of four of the points $A, M, B, I, D, E, X, T, R, O, U, S$.

T-3 Compute the value of x for which $\log _{8}\left(\log _{4} x\right)=\log _{64}\left(\log _{2} x\right)$.
T-4 For non-negative integers A and B, with $A \geq B$, let $A \star B$ denote the number formed by the concatenation of $(A+B),(A-B)$, and $(A \times B)$. For example, $7 \star 5=12235$. Compute the number of ordered pairs $(A, B), 1 \leq B \leq A \leq 9$, such that $A \star B$ contains at most three distinct digits (to clarify, the example contains four distinct digits).

T-5 Compute the greatest integer n for which $(6!)^{n}$ is a factor of $60!$.
T-6 The ARML Local staff have ranked each of the 10 individual problems in order of difficulty from 1 to 10 . They wish to order the problems such that the problem with difficulty i is before the problem with difficulty $i+2$ for all $1 \leq i \leq 8$. Compute the number of orderings of the problems that satisfy this condition.

T-7 Let $A B C$ be a triangle with $A B=5, B C=12$, and an obtuse angle at B. It is given that there exists a point P in plane $A B C$ for which $\angle P B C=\angle P C B=\angle P A B=\gamma$, where γ is an acute angle satisfying $\tan \gamma=\frac{3}{4}$. Compute $\sin \angle A B P$.

T-8 Suppose a, b, and c are real numbers such that a, b, c and $a, b+1, c+2$ are both geometric sequences in their respective orders. Compute the smallest possible value of $(a+b+c)^{2}$.

T-9 Circles ω_{1} and ω_{2} have radii 5 and 12 respectively and have centers distance 13 apart. Let A and B denote the intersection points of ω_{1} and ω_{2}. A line ℓ passing through A intersects ω_{1} again at X and ω_{2} again at Y such that $\angle A B Y=2 \angle A B X$. Compute $X Y$.

T-10 Compute the sum of all possible values of $a+b$, where a and b are integers such that $a>b$ and $a^{2}-b^{2}=2016$.

T-11 If u and v are complex numbers such that $u+v=9$ and $u^{3}+v^{3}=81$, compute $u^{2}+v^{2}$.

T-12 On the planet ARMLia, there are three species of sentient creatures: Trickles, who count in base 3, Quadbos, who count in base 4, and Quinters, who count in base 5 . One thing all three species agree on is the magic of the positive integer Zelf, which ends in the digits " 11 " when represented in all three bases. Compute the least possible value (in base 10) of Zelf.

T-13 Compute the number of ordered pairs of integers (a, b, c) with $a \geq b \geq c$ such that a, b, and c are the side lengths of a non-degenerate triangle with perimeter 218 .

T-14 Compute the sum of the real roots of $f(x)=x^{6}+3 x^{4}-2018 x^{3}+3 x^{2}+1$.
T-15 Place in the 10×10 grid of cells below one 4×4 square, two 3×3 squares, three 2×2 squares, and four 1×1 squares such that:

- All square sides are parallel to boundaries of the grid.
- No squares overlap nor share a common boundary, not even a corner point.
- The total number of 1×1 cells covered by squares in each row and column is equal to the number to the right or below the row or column, respectively. The numbered or lettered cells may not be covered by tiles.
Enter on your answer sheet the letter coordinates (given in the first row and column) of the four cells containing the 1×1 squares, for example, if the four corners of the grid contained the 1×1 tiles, you would enter $A K, J K, A T$, and $J T$.

	A	B	C	D	E	F	G	H	I	J	
K											
L											3
M											2
N											7
O											4
P											7
Q											7
R											3
S											
T											
	3	6	4	8	7						

2018 ARML Local Team Round (45 minutes)

T-1 A sphere with surface area 2118π is circumscribed around a cube and a smaller sphere is inscribed in the cube. Compute the surface area of the smaller sphere.

T-2 $R E B S$ is a square of side length 3 . If $S U=U O=O R=R T=T X=X E=E D=D I=$ $I B=B M=M A=A S=1$, compute the sum of the areas of the distinct rectangles whose vertices consist of four of the points $A, M, B, I, D, E, X, T, R, O, U, S$.

T-3 Compute the value of x for which $\log _{8}\left(\log _{4} x\right)=\log _{64}\left(\log _{2} x\right)$.
T-4 For non-negative integers A and B, with $A \geq B$, let $A \star B$ denote the number formed by the concatenation of $(A+B),(A-B)$, and $(A \times B)$. For example, $7 \star 5=12235$. Compute the number of ordered pairs $(A, B), 1 \leq B \leq A \leq 9$, such that $A \star B$ contains at most three distinct digits (to clarify, the example contains four distinct digits).

T-5 Compute the greatest integer n for which $(6!)^{n}$ is a factor of $60!$.
T-6 The ARML Local staff have ranked each of the 10 individual problems in order of difficulty from 1 to 10 . They wish to order the problems such that the problem with difficulty i is before the problem with difficulty $i+2$ for all $1 \leq i \leq 8$. Compute the number of orderings of the problems that satisfy this condition.

T-7 Let $A B C$ be a triangle with $A B=5, B C=12$, and an obtuse angle at B. It is given that there exists a point P in plane $A B C$ for which $\angle P B C=\angle P C B=\angle P A B=\gamma$, where γ is an acute angle satisfying $\tan \gamma=\frac{3}{4}$. Compute $\sin \angle A B P$.

T-8 Suppose a, b, and c are real numbers such that a, b, c and $a, b+1, c+2$ are both geometric sequences in their respective orders. Compute the smallest possible value of $(a+b+c)^{2}$.

T-9 Circles ω_{1} and ω_{2} have radii 5 and 12 respectively and have centers distance 13 apart. Let A and B denote the intersection points of ω_{1} and ω_{2}. A line ℓ passing through A intersects ω_{1} again at X and ω_{2} again at Y such that $\angle A B Y=2 \angle A B X$. Compute $X Y$.

T-10 Compute the sum of all possible values of $a+b$, where a and b are integers such that $a>b$ and $a^{2}-b^{2}=2016$.

T-11 If u and v are complex numbers such that $u+v=9$ and $u^{3}+v^{3}=81$, compute $u^{2}+v^{2}$.

T-12 On the planet ARMLia, there are three species of sentient creatures: Trickles, who count in base 3, Quadbos, who count in base 4, and Quinters, who count in base 5 . One thing all three species agree on is the magic of the positive integer Zelf, which ends in the digits " 11 " when represented in all three bases. Compute the least possible value (in base 10) of Zelf.

T-13 Compute the number of ordered pairs of integers (a, b, c) with $a \geq b \geq c$ such that a, b, and c are the side lengths of a non-degenerate triangle with perimeter 218 .

T-14 Compute the sum of the real roots of $f(x)=x^{6}+3 x^{4}-2018 x^{3}+3 x^{2}+1$.
T-15 Place in the 10×10 grid of cells below one 4×4 square, two 3×3 squares, three 2×2 squares, and four 1×1 squares such that:

- All square sides are parallel to boundaries of the grid.
- No squares overlap nor share a common boundary, not even a corner point.
- The total number of 1×1 cells covered by squares in each row and column is equal to the number to the right or below the row or column, respectively. The numbered or lettered cells may not be covered by tiles.
Enter on your answer sheet the letter coordinates (given in the first row and column) of the four cells containing the 1×1 squares, for example, if the four corners of the grid contained the 1×1 tiles, you would enter $A K, J K, A T$, and $J T$.

	A	B	C	D	E	F	G	H	I	J	
K											
L											3
M											2
N											7
O											4
P											7
Q											7
R											3
S											
T											
	3	6	4	8	7						

2018 ARML Local Team Round (45 minutes)

T-1 A sphere with surface area 2118π is circumscribed around a cube and a smaller sphere is inscribed in the cube. Compute the surface area of the smaller sphere.

T-2 $R E B S$ is a square of side length 3 . If $S U=U O=O R=R T=T X=X E=E D=D I=$ $I B=B M=M A=A S=1$, compute the sum of the areas of the distinct rectangles whose vertices consist of four of the points $A, M, B, I, D, E, X, T, R, O, U, S$.

T-3 Compute the value of x for which $\log _{8}\left(\log _{4} x\right)=\log _{64}\left(\log _{2} x\right)$.
T-4 For non-negative integers A and B, with $A \geq B$, let $A \star B$ denote the number formed by the concatenation of $(A+B),(A-B)$, and $(A \times B)$. For example, $7 \star 5=12235$. Compute the number of ordered pairs $(A, B), 1 \leq B \leq A \leq 9$, such that $A \star B$ contains at most three distinct digits (to clarify, the example contains four distinct digits).

T-5 Compute the greatest integer n for which $(6!)^{n}$ is a factor of $60!$.
T-6 The ARML Local staff have ranked each of the 10 individual problems in order of difficulty from 1 to 10 . They wish to order the problems such that the problem with difficulty i is before the problem with difficulty $i+2$ for all $1 \leq i \leq 8$. Compute the number of orderings of the problems that satisfy this condition.

T-7 Let $A B C$ be a triangle with $A B=5, B C=12$, and an obtuse angle at B. It is given that there exists a point P in plane $A B C$ for which $\angle P B C=\angle P C B=\angle P A B=\gamma$, where γ is an acute angle satisfying $\tan \gamma=\frac{3}{4}$. Compute $\sin \angle A B P$.

T-8 Suppose a, b, and c are real numbers such that a, b, c and $a, b+1, c+2$ are both geometric sequences in their respective orders. Compute the smallest possible value of $(a+b+c)^{2}$.

T-9 Circles ω_{1} and ω_{2} have radii 5 and 12 respectively and have centers distance 13 apart. Let A and B denote the intersection points of ω_{1} and ω_{2}. A line ℓ passing through A intersects ω_{1} again at X and ω_{2} again at Y such that $\angle A B Y=2 \angle A B X$. Compute $X Y$.

T-10 Compute the sum of all possible values of $a+b$, where a and b are integers such that $a>b$ and $a^{2}-b^{2}=2016$.

T-11 If u and v are complex numbers such that $u+v=9$ and $u^{3}+v^{3}=81$, compute $u^{2}+v^{2}$.

T-12 On the planet ARMLia, there are three species of sentient creatures: Trickles, who count in base 3, Quadbos, who count in base 4, and Quinters, who count in base 5 . One thing all three species agree on is the magic of the positive integer Zelf, which ends in the digits " 11 " when represented in all three bases. Compute the least possible value (in base 10) of Zelf.

T-13 Compute the number of ordered pairs of integers (a, b, c) with $a \geq b \geq c$ such that a, b, and c are the side lengths of a non-degenerate triangle with perimeter 218 .

T-14 Compute the sum of the real roots of $f(x)=x^{6}+3 x^{4}-2018 x^{3}+3 x^{2}+1$.
T-15 Place in the 10×10 grid of cells below one 4×4 square, two 3×3 squares, three 2×2 squares, and four 1×1 squares such that:

- All square sides are parallel to boundaries of the grid.
- No squares overlap nor share a common boundary, not even a corner point.
- The total number of 1×1 cells covered by squares in each row and column is equal to the number to the right or below the row or column, respectively. The numbered or lettered cells may not be covered by tiles.
Enter on your answer sheet the letter coordinates (given in the first row and column) of the four cells containing the 1×1 squares, for example, if the four corners of the grid contained the 1×1 tiles, you would enter $A K, J K, A T$, and $J T$.

	A	B	C	D	E	F	G	H	I	J	
K											
L											3
M											2
N											7
O											4
P											7
Q											7
R											3
S											
T											
	3	6	4	8	7						

2018 ARML Local Team Round (45 minutes)

T-1 A sphere with surface area 2118π is circumscribed around a cube and a smaller sphere is inscribed in the cube. Compute the surface area of the smaller sphere.

T-2 $R E B S$ is a square of side length 3 . If $S U=U O=O R=R T=T X=X E=E D=D I=$ $I B=B M=M A=A S=1$, compute the sum of the areas of the distinct rectangles whose vertices consist of four of the points $A, M, B, I, D, E, X, T, R, O, U, S$.

T-3 Compute the value of x for which $\log _{8}\left(\log _{4} x\right)=\log _{64}\left(\log _{2} x\right)$.
T-4 For non-negative integers A and B, with $A \geq B$, let $A \star B$ denote the number formed by the concatenation of $(A+B),(A-B)$, and $(A \times B)$. For example, $7 \star 5=12235$. Compute the number of ordered pairs $(A, B), 1 \leq B \leq A \leq 9$, such that $A \star B$ contains at most three distinct digits (to clarify, the example contains four distinct digits).

T-5 Compute the greatest integer n for which $(6!)^{n}$ is a factor of $60!$.
T-6 The ARML Local staff have ranked each of the 10 individual problems in order of difficulty from 1 to 10 . They wish to order the problems such that the problem with difficulty i is before the problem with difficulty $i+2$ for all $1 \leq i \leq 8$. Compute the number of orderings of the problems that satisfy this condition.

T-7 Let $A B C$ be a triangle with $A B=5, B C=12$, and an obtuse angle at B. It is given that there exists a point P in plane $A B C$ for which $\angle P B C=\angle P C B=\angle P A B=\gamma$, where γ is an acute angle satisfying $\tan \gamma=\frac{3}{4}$. Compute $\sin \angle A B P$.

T-8 Suppose a, b, and c are real numbers such that a, b, c and $a, b+1, c+2$ are both geometric sequences in their respective orders. Compute the smallest possible value of $(a+b+c)^{2}$.

T-9 Circles ω_{1} and ω_{2} have radii 5 and 12 respectively and have centers distance 13 apart. Let A and B denote the intersection points of ω_{1} and ω_{2}. A line ℓ passing through A intersects ω_{1} again at X and ω_{2} again at Y such that $\angle A B Y=2 \angle A B X$. Compute $X Y$.

T-10 Compute the sum of all possible values of $a+b$, where a and b are integers such that $a>b$ and $a^{2}-b^{2}=2016$.

T-11 If u and v are complex numbers such that $u+v=9$ and $u^{3}+v^{3}=81$, compute $u^{2}+v^{2}$.

T-12 On the planet ARMLia, there are three species of sentient creatures: Trickles, who count in base 3, Quadbos, who count in base 4, and Quinters, who count in base 5 . One thing all three species agree on is the magic of the positive integer Zelf, which ends in the digits " 11 " when represented in all three bases. Compute the least possible value (in base 10) of Zelf.

T-13 Compute the number of ordered pairs of integers (a, b, c) with $a \geq b \geq c$ such that a, b, and c are the side lengths of a non-degenerate triangle with perimeter 218 .

T-14 Compute the sum of the real roots of $f(x)=x^{6}+3 x^{4}-2018 x^{3}+3 x^{2}+1$.
T-15 Place in the 10×10 grid of cells below one 4×4 square, two 3×3 squares, three 2×2 squares, and four 1×1 squares such that:

- All square sides are parallel to boundaries of the grid.
- No squares overlap nor share a common boundary, not even a corner point.
- The total number of 1×1 cells covered by squares in each row and column is equal to the number to the right or below the row or column, respectively. The numbered or lettered cells may not be covered by tiles.
Enter on your answer sheet the letter coordinates (given in the first row and column) of the four cells containing the 1×1 squares, for example, if the four corners of the grid contained the 1×1 tiles, you would enter $A K, J K, A T$, and $J T$.

	A	B	C	D	E	F	G	H	I	J	
K											
L											3
M											2
N											7
O											4
P											7
Q											7
R											3
S											
T											
	3	6	4	8	7						

2018 ARML Local Team Round (45 minutes)

T-1 A sphere with surface area 2118π is circumscribed around a cube and a smaller sphere is inscribed in the cube. Compute the surface area of the smaller sphere.

T-2 $R E B S$ is a square of side length 3 . If $S U=U O=O R=R T=T X=X E=E D=D I=$ $I B=B M=M A=A S=1$, compute the sum of the areas of the distinct rectangles whose vertices consist of four of the points $A, M, B, I, D, E, X, T, R, O, U, S$.

T-3 Compute the value of x for which $\log _{8}\left(\log _{4} x\right)=\log _{64}\left(\log _{2} x\right)$.
T-4 For non-negative integers A and B, with $A \geq B$, let $A \star B$ denote the number formed by the concatenation of $(A+B),(A-B)$, and $(A \times B)$. For example, $7 \star 5=12235$. Compute the number of ordered pairs $(A, B), 1 \leq B \leq A \leq 9$, such that $A \star B$ contains at most three distinct digits (to clarify, the example contains four distinct digits).

T-5 Compute the greatest integer n for which $(6!)^{n}$ is a factor of $60!$.
T-6 The ARML Local staff have ranked each of the 10 individual problems in order of difficulty from 1 to 10 . They wish to order the problems such that the problem with difficulty i is before the problem with difficulty $i+2$ for all $1 \leq i \leq 8$. Compute the number of orderings of the problems that satisfy this condition.

T-7 Let $A B C$ be a triangle with $A B=5, B C=12$, and an obtuse angle at B. It is given that there exists a point P in plane $A B C$ for which $\angle P B C=\angle P C B=\angle P A B=\gamma$, where γ is an acute angle satisfying $\tan \gamma=\frac{3}{4}$. Compute $\sin \angle A B P$.

T-8 Suppose a, b, and c are real numbers such that a, b, c and $a, b+1, c+2$ are both geometric sequences in their respective orders. Compute the smallest possible value of $(a+b+c)^{2}$.

T-9 Circles ω_{1} and ω_{2} have radii 5 and 12 respectively and have centers distance 13 apart. Let A and B denote the intersection points of ω_{1} and ω_{2}. A line ℓ passing through A intersects ω_{1} again at X and ω_{2} again at Y such that $\angle A B Y=2 \angle A B X$. Compute $X Y$.

T-10 Compute the sum of all possible values of $a+b$, where a and b are integers such that $a>b$ and $a^{2}-b^{2}=2016$.

T-11 If u and v are complex numbers such that $u+v=9$ and $u^{3}+v^{3}=81$, compute $u^{2}+v^{2}$.

T-12 On the planet ARMLia, there are three species of sentient creatures: Trickles, who count in base 3, Quadbos, who count in base 4, and Quinters, who count in base 5 . One thing all three species agree on is the magic of the positive integer Zelf, which ends in the digits " 11 " when represented in all three bases. Compute the least possible value (in base 10) of Zelf.

T-13 Compute the number of ordered pairs of integers (a, b, c) with $a \geq b \geq c$ such that a, b, and c are the side lengths of a non-degenerate triangle with perimeter 218 .

T-14 Compute the sum of the real roots of $f(x)=x^{6}+3 x^{4}-2018 x^{3}+3 x^{2}+1$.
T-15 Place in the 10×10 grid of cells below one 4×4 square, two 3×3 squares, three 2×2 squares, and four 1×1 squares such that:

- All square sides are parallel to boundaries of the grid.
- No squares overlap nor share a common boundary, not even a corner point.
- The total number of 1×1 cells covered by squares in each row and column is equal to the number to the right or below the row or column, respectively. The numbered or lettered cells may not be covered by tiles.
Enter on your answer sheet the letter coordinates (given in the first row and column) of the four cells containing the 1×1 squares, for example, if the four corners of the grid contained the 1×1 tiles, you would enter $A K, J K, A T$, and $J T$.

	A	B	C	D	E	F	G	H	I	J	
K											
L											3
M											2
N											7
O											4
P											7
Q											7
R											3
S											
T											
	3	6	4	8	7						

2018 ARML Local Team Round (45 minutes)

T-1 A sphere with surface area 2118π is circumscribed around a cube and a smaller sphere is inscribed in the cube. Compute the surface area of the smaller sphere.

T-2 $R E B S$ is a square of side length 3 . If $S U=U O=O R=R T=T X=X E=E D=D I=$ $I B=B M=M A=A S=1$, compute the sum of the areas of the distinct rectangles whose vertices consist of four of the points $A, M, B, I, D, E, X, T, R, O, U, S$.

T-3 Compute the value of x for which $\log _{8}\left(\log _{4} x\right)=\log _{64}\left(\log _{2} x\right)$.
T-4 For non-negative integers A and B, with $A \geq B$, let $A \star B$ denote the number formed by the concatenation of $(A+B),(A-B)$, and $(A \times B)$. For example, $7 \star 5=12235$. Compute the number of ordered pairs $(A, B), 1 \leq B \leq A \leq 9$, such that $A \star B$ contains at most three distinct digits (to clarify, the example contains four distinct digits).

T-5 Compute the greatest integer n for which $(6!)^{n}$ is a factor of $60!$.
T-6 The ARML Local staff have ranked each of the 10 individual problems in order of difficulty from 1 to 10 . They wish to order the problems such that the problem with difficulty i is before the problem with difficulty $i+2$ for all $1 \leq i \leq 8$. Compute the number of orderings of the problems that satisfy this condition.

T-7 Let $A B C$ be a triangle with $A B=5, B C=12$, and an obtuse angle at B. It is given that there exists a point P in plane $A B C$ for which $\angle P B C=\angle P C B=\angle P A B=\gamma$, where γ is an acute angle satisfying $\tan \gamma=\frac{3}{4}$. Compute $\sin \angle A B P$.

T-8 Suppose a, b, and c are real numbers such that a, b, c and $a, b+1, c+2$ are both geometric sequences in their respective orders. Compute the smallest possible value of $(a+b+c)^{2}$.

T-9 Circles ω_{1} and ω_{2} have radii 5 and 12 respectively and have centers distance 13 apart. Let A and B denote the intersection points of ω_{1} and ω_{2}. A line ℓ passing through A intersects ω_{1} again at X and ω_{2} again at Y such that $\angle A B Y=2 \angle A B X$. Compute $X Y$.

T-10 Compute the sum of all possible values of $a+b$, where a and b are integers such that $a>b$ and $a^{2}-b^{2}=2016$.

T-11 If u and v are complex numbers such that $u+v=9$ and $u^{3}+v^{3}=81$, compute $u^{2}+v^{2}$.

T-12 On the planet ARMLia, there are three species of sentient creatures: Trickles, who count in base 3, Quadbos, who count in base 4, and Quinters, who count in base 5 . One thing all three species agree on is the magic of the positive integer Zelf, which ends in the digits " 11 " when represented in all three bases. Compute the least possible value (in base 10) of Zelf.

T-13 Compute the number of ordered pairs of integers (a, b, c) with $a \geq b \geq c$ such that a, b, and c are the side lengths of a non-degenerate triangle with perimeter 218 .

T-14 Compute the sum of the real roots of $f(x)=x^{6}+3 x^{4}-2018 x^{3}+3 x^{2}+1$.
T-15 Place in the 10×10 grid of cells below one 4×4 square, two 3×3 squares, three 2×2 squares, and four 1×1 squares such that:

- All square sides are parallel to boundaries of the grid.
- No squares overlap nor share a common boundary, not even a corner point.
- The total number of 1×1 cells covered by squares in each row and column is equal to the number to the right or below the row or column, respectively. The numbered or lettered cells may not be covered by tiles.
Enter on your answer sheet the letter coordinates (given in the first row and column) of the four cells containing the 1×1 squares, for example, if the four corners of the grid contained the 1×1 tiles, you would enter $A K, J K, A T$, and $J T$.

	A	B	C	D	E	F	G	H	I	J	
K											
L											3
M											2
N											7
O											4
P											7
Q											7
R											3
S											
T											
	3	6	4	8	7						

2018 ARML Local Individual Problems
 Individual Round (10 minutes per pair)

I-1 The number $N=2^{12}-1$ is the product of 5 (not necessarily distinct) prime numbers p_{1}, p_{2}, p_{3}, p_{4}, and p_{5}. Compute $p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$.

I-2 If $a_{0}, a_{1}, a_{2}, \ldots$ is an arithmetic sequence and $18 a_{20}+20=20 a_{18}+18$, compute a_{0}.
I-3 If x and y are real numbers such that $2 x+y=4$ and $5 x+3 y=9$, compute the value of $16 x+9 y$.

I-4 For each real number x, let $f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$. Compute the least $p>0$ such that $f(x+p)=f(x)$ for all real x.

I-5 Compute the number of triples of consecutive positive integers less than 50 whose product is both a multiple of 20 and 18.

I-6 Suppose that x is a complex number that satisfies $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$. Compute the product $x^{20} \cdot x^{18} \cdot x^{2} \cdot x^{0} \cdot x^{1} \cdot x^{8}$.

I-7 Let $S=\{1,2,3,4,5,6\}$. Compute the number of invertible 2×2 matrices with entries that are distinct elements of S.

I- 8 Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute the maximum value of $E F$.

I-9 Compute the number of positive integers N between 1 and 100 inclusive have the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.

I-10 It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}$.

2018 ARML Local Individual Questions 1 and 2 (10 minutes)

I-1. \quad The number $N=2^{12}-1$ is the product of 5 (not necessarily distinct) prime numbers $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{5}. Compute $p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$.

I-2. If $a_{0}, a_{1}, a_{2}, \ldots$ is an arithmetic sequence and $18 a_{20}+20=20 a_{18}+18$, compute a_{0}.

2018 ARML Local Individual Questions 1 and 2 (10 minutes)

I-1. \quad The number $N=2^{12}-1$ is the product of 5 (not necessarily distinct) prime numbers $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{5}. Compute $p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$.

I-2. If $a_{0}, a_{1}, a_{2}, \ldots$ is an arithmetic sequence and $18 a_{20}+20=20 a_{18}+18$, compute a_{0}.

2018 ARML Local Individual Questions 1 and 2 (10 minutes)

I-1. \quad The number $N=2^{12}-1$ is the product of 5 (not necessarily distinct) prime numbers $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{5}. Compute $p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$.

I-2. If $a_{0}, a_{1}, a_{2}, \ldots$ is an arithmetic sequence and $18 a_{20}+20=20 a_{18}+18$, compute a_{0}.

2018 ARML Local Individual Questions 1 and 2 (10 minutes)

I-1. \quad The number $N=2^{12}-1$ is the product of 5 (not necessarily distinct) prime numbers $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{5}. Compute $p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$.

I-2. If $a_{0}, a_{1}, a_{2}, \ldots$ is an arithmetic sequence and $18 a_{20}+20=20 a_{18}+18$, compute a_{0}.

2018 ARML Local Individual Questions 1 and 2 (10 minutes)

I-1. \quad The number $N=2^{12}-1$ is the product of 5 (not necessarily distinct) prime numbers $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{5}. Compute $p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$.

I-2. If $a_{0}, a_{1}, a_{2}, \ldots$ is an arithmetic sequence and $18 a_{20}+20=20 a_{18}+18$, compute a_{0}.

2018 ARML Local Individual Questions 1 and 2 (10 minutes)

I-1. \quad The number $N=2^{12}-1$ is the product of 5 (not necessarily distinct) prime numbers $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{5}. Compute $p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$.

I-2. If $a_{0}, a_{1}, a_{2}, \ldots$ is an arithmetic sequence and $18 a_{20}+20=20 a_{18}+18$, compute a_{0}.

2018 ARML Local Individual Questions 3 and 4 (10 minutes)

I-3. \quad If x and y are real numbers such that $2 x+y=4$ and $5 x+3 y=9$, compute the value of $16 x+9 y$.

I-4. For each real number x, let $f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$. Compute the least $p>0$ such that $f(x+p)=f(x)$ for all real x.

2018 ARML Local Individual Questions 3 and 4 (10 minutes)

I-3. \quad If x and y are real numbers such that $2 x+y=4$ and $5 x+3 y=9$, compute the value of $16 x+9 y$.

I-4. For each real number x, let $f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$. Compute the least $p>0$ such that $f(x+p)=f(x)$ for all real x.

2018 ARML Local Individual Questions 3 and 4 (10 minutes)

I-3. \quad If x and y are real numbers such that $2 x+y=4$ and $5 x+3 y=9$, compute the value of $16 x+9 y$.

I-4. For each real number x, let $f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$. Compute the least $p>0$ such that $f(x+p)=f(x)$ for all real x.

2018 ARML Local Individual Questions 3 and 4 (10 minutes)

I-3. \quad If x and y are real numbers such that $2 x+y=4$ and $5 x+3 y=9$, compute the value of $16 x+9 y$.

I-4. For each real number x, let $f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$. Compute the least $p>0$ such that $f(x+p)=f(x)$ for all real x.

2018 ARML Local Individual Questions 3 and 4 (10 minutes)

I-3. \quad If x and y are real numbers such that $2 x+y=4$ and $5 x+3 y=9$, compute the value of $16 x+9 y$.

I-4. For each real number x, let $f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$. Compute the least $p>0$ such that $f(x+p)=f(x)$ for all real x.

2018 ARML Local Individual Questions 3 and 4 (10 minutes)

I-3. \quad If x and y are real numbers such that $2 x+y=4$ and $5 x+3 y=9$, compute the value of $16 x+9 y$.

I-4. For each real number x, let $f(x)=\sin \left(\frac{\pi x}{3}\right)+\cos \left(\frac{\pi x}{2}\right)$. Compute the least $p>0$ such that $f(x+p)=f(x)$ for all real x.

2018 ARML Local Individual Questions 5 and 6 (10 minutes)

I-5. Compute the number of triples of consecutive positive integers less than 50 whose product is both a multiple of 20 and 18 .

I-6. \quad Suppose that x is a complex number that satisfies $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$. Compute the product $x^{20} \cdot x^{18} \cdot x^{2} \cdot x^{0} \cdot x^{1} \cdot x^{8}$.

2018 ARML Local Individual Questions 5 and 6 (10 minutes)

I-5. Compute the number of triples of consecutive positive integers less than 50 whose product is both a multiple of 20 and 18 .

I-6. \quad Suppose that x is a complex number that satisfies $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$. Compute the product $x^{20} \cdot x^{18} \cdot x^{2} \cdot x^{0} \cdot x^{1} \cdot x^{8}$.

2018 ARML Local Individual Questions 5 and 6 (10 minutes)

I-5. Compute the number of triples of consecutive positive integers less than 50 whose product is both a multiple of 20 and 18 .

I-6. \quad Suppose that x is a complex number that satisfies $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$. Compute the product $x^{20} \cdot x^{18} \cdot x^{2} \cdot x^{0} \cdot x^{1} \cdot x^{8}$.

2018 ARML Local Individual Questions 5 and 6 (10 minutes)

I-5. Compute the number of triples of consecutive positive integers less than 50 whose product is both a multiple of 20 and 18 .

I-6. \quad Suppose that x is a complex number that satisfies $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$. Compute the product $x^{20} \cdot x^{18} \cdot x^{2} \cdot x^{0} \cdot x^{1} \cdot x^{8}$.

2018 ARML Local Individual Questions 5 and 6 (10 minutes)

I-5. Compute the number of triples of consecutive positive integers less than 50 whose product is both a multiple of 20 and 18 .

I-6. \quad Suppose that x is a complex number that satisfies $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$. Compute the product $x^{20} \cdot x^{18} \cdot x^{2} \cdot x^{0} \cdot x^{1} \cdot x^{8}$.

2018 ARML Local Individual Questions 5 and 6 (10 minutes)

I-5. Compute the number of triples of consecutive positive integers less than 50 whose product is both a multiple of 20 and 18 .

I-6. \quad Suppose that x is a complex number that satisfies $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$. Compute the product $x^{20} \cdot x^{18} \cdot x^{2} \cdot x^{0} \cdot x^{1} \cdot x^{8}$.

2018 ARML Local Individual Questions 7 and 8 (10 minutes)

I-7. Let $S=\{1,2,3,4,5,6\}$. Compute the number of invertible 2×2 matrices with entries that are distinct elements of S.

I-8. Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute the maximum value of $E F$.

2018 ARML Local Individual Questions 7 and 8 (10 minutes)

I-7. Let $S=\{1,2,3,4,5,6\}$. Compute the number of invertible 2×2 matrices with entries that are distinct elements of S.

I-8. Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute the maximum value of $E F$.

2018 ARML Local Individual Questions 7 and 8 (10 minutes)

I-7. Let $S=\{1,2,3,4,5,6\}$. Compute the number of invertible 2×2 matrices with entries that are distinct elements of S.

I-8. Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute the maximum value of $E F$.

2018 ARML Local Individual Questions 7 and 8 (10 minutes)

I-7. Let $S=\{1,2,3,4,5,6\}$. Compute the number of invertible 2×2 matrices with entries that are distinct elements of S.

I-8. Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute the maximum value of $E F$.

2018 ARML Local Individual Questions 7 and 8 (10 minutes)

I-7. Let $S=\{1,2,3,4,5,6\}$. Compute the number of invertible 2×2 matrices with entries that are distinct elements of S.

I-8. Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute the maximum value of $E F$.

2018 ARML Local Individual Questions 7 and 8 (10 minutes)

I-7. Let $S=\{1,2,3,4,5,6\}$. Compute the number of invertible 2×2 matrices with entries that are distinct elements of S.

I-8. Let $A B C D$ be a rectangle with $A B=15$ and $B C=19$. Points E and F are located inside $A B C D$ such that quadrilaterals $A E C F$ and $B E D F$ are both parallelograms with areas 107 and 88 respectively. Compute the maximum value of $E F$.

2018 ARML Local Individual Questions 9 and 10 (10 minutes)

I-9. Compute the number of positive integers N between 1 and 100 inclusive have the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.

I-10. It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}$.

2018 ARML Local Individual Questions 9 and 10 (10 minutes)

I-9. Compute the number of positive integers N between 1 and 100 inclusive have the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.

I-10. It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}$.

2018 ARML Local Individual Questions 9 and 10 (10 minutes)

I-9. Compute the number of positive integers N between 1 and 100 inclusive have the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.

I-10. It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}$.

2018 ARML Local Individual Questions 9 and 10 (10 minutes)

I-9. Compute the number of positive integers N between 1 and 100 inclusive have the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.

I-10. It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}$.

2018 ARML Local Individual Questions 9 and 10 (10 minutes)

I-9. Compute the number of positive integers N between 1 and 100 inclusive have the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.

I-10. It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}$.

2018 ARML Local Individual Questions 9 and 10 (10 minutes)

I-9. Compute the number of positive integers N between 1 and 100 inclusive have the property that there exist distinct divisors a and b of N such that $a+b$ is also a divisor of N.

I-10. It is given that there exist real numbers a_{0}, \ldots, a_{18} such that

$$
\frac{\sin ^{2}(10 x)}{\sin ^{2}(x)}=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+\cdots+a_{18} \cos (18 x)
$$

for all x with $\sin x \neq 0$. Compute $a_{0}^{2}+a_{1}^{2}+\cdots+a_{18}^{2}$.

2018 ARML Local Contest: Sponsored by Star League Relay Round Answer Sheets

Team Name: Relay 1, Team 1 Answer (3 minutes, 2 points)	Team Name: Relay 1, Team 1 Answer (6 minutes, 1 point)
Team Name: Relay 1, Team 2 Answer (3 minutes, 2 points)	Team Name: Relay 1, Team 2 Answer (6 minutes, 1 point)
Team Name: Relay 1, Team 3 Answer (3 minutes, 2 points)	Team Name: Relay 1, Team 3 Answer (6 minutes, 1 point)
Team Name: Relay 2, Team 1 Answer (4 minutes, 4 points)	Team Name: Relay 2, Team 1 Answer (8 minutes, 2 points)
Team Name: Relay 2, Team 2 Answer (4 minutes, 4 points)	Team Name: Relay 2, Team 2 Answer (8 minutes, 2 points)
Team Name: Relay 3, Team Answer (5 minutes, 6 points)	Team Name: Relay 3, Team Answer (10 minutes, 3 points)

2018 ARML Local Relay 1 (6 minutes)

R1-1 Compute the sum of the values of x such that $x^{(x-4)^{2}}=x^{16}$.

2018 ARML Local Relay 1 (6 minutes)

R1-2 Let $T=$ TNYWR. Compute the remainder when

$$
\sum_{i=1}^{3}(x-4 i)^{(4-i)}
$$

is divided by $x-T$.

2018 ARML Local Relay 1 (6 minutes)

R1-1 Compute the sum of the values of x such that $x^{(x-4)^{2}}=x^{16}$.

2018 ARML Local Relay 1 (6 minutes)

R1-2 Let $T=$ TNYWR. Compute the remainder when

$$
\sum_{i=1}^{3}(x-4 i)^{(4-i)}
$$

is divided by $x-T$.

2018 ARML Local Relay 1 (6 minutes)

R1-1 Compute the sum of the values of x such that $x^{(x-4)^{2}}=x^{16}$.

2018 ARML Local Relay 1 (6 minutes)

R1-2 Let $T=$ TNYWR. Compute the remainder when

$$
\sum_{i=1}^{3}(x-4 i)^{(4-i)}
$$

is divided by $x-T$.

2018 ARML Local Relay 2
 (8 minutes)

R2-1 Leah rolls a fair standard six-sided die three times. Compute the probability that the product of the three rolls is prime.

2018 ARML Local Relay 2
 (8 minutes)

R2-2 Let $T=$ TNYWR. Compute the greatest integer N such that $8^{N T}<4$.

2018 ARML Local Relay 2
 (8 minutes)

R2-3 Let $T=$ TNYWR. Compute the sum of the perimeters of all distinct rectangles with integer side lengths and area T.

2018 ARML Local Relay 2
 (8 minutes)

R2-1 Leah rolls a fair standard six-sided die three times. Compute the probability that the product of the three rolls is prime.

2018 ARML Local Relay 2
 (8 minutes)

R2-2 Let $T=$ TNYWR. Compute the greatest integer N such that $8^{N T}<4$.

2018 ARML Local Relay 2
 (8 minutes)

R2-3 Let $T=$ TNYWR. Compute the sum of the perimeters of all distinct rectangles with integer side lengths and area T.

2018 ARML Local Relay 3
 (10 minutes)

R3-1 Compute the sum of all prime numbers p such that $p^{2018}+p^{2019}$ is a perfect square.

2018 ARML Local Relay 3
 (10 minutes)

R3-2 Let $T=$ TNYWR. Compute the number of integers in the domain of the function $f(x)=\sqrt{\log ((2-x)(x+T))}$.

2018 ARML Local Relay 3
 (10 minutes)

R3-3 Let $T=$ TNYWR. Compute the number of ordered triplets (a, b, c) such that $1 \leq a, b, c \leq T$ and $a+b+c$ is odd.

2018 ARML Local Relay 3 (10 minutes)

R3-4 Let $T=$ TNYWR. The lengths of the two perpendicular legs of a right triangle sum to T. A circle of radius r is tangent to all three sides of the triangle, and a circle of radius R passes through all three vertices of the triangle. Compute $r+R$.

2018 ARML Local Relay 3
 (10 minutes)

R3-5 Let $T=$ TNYWR. Compute the number of integers between 100 and 999 inclusive whose digits sum to T that are not multiples of 5.

2018 ARML Local Relay 3 (10 minutes)

R3-6 Let $T=$ TNYWR. The number of subsets of size N of the letters in the word TEAMWORK that do not contain all of the vowels (A, E, and O) is T. Compute N.

Name: \qquad
Team: \qquad

Time to submit answer (seconds): \qquad

Answer to Tiebreaker:

> 2018 ARML Local Tiebreaker
> (10 minutes)

For all nonnegative integers c, let $f(c)$ denote the unique real number x satisfying the equation

$$
\frac{x^{5}+x^{4}-48}{x^{9}-1}=c .
$$

Compute $f(0) f(1) f(2) \cdots f(47)$.

Name: \qquad
Team: \qquad

Time to submit answer (seconds): \qquad

Answer to Tiebreaker:

> 2018 ARML Local Tiebreaker
> (10 minutes)

For all nonnegative integers c, let $f(c)$ denote the unique real number x satisfying the equation

$$
\frac{x^{5}+x^{4}-48}{x^{9}-1}=c .
$$

Compute $f(0) f(1) f(2) \cdots f(47)$.

Name: \qquad
Team: \qquad

Time to submit answer (seconds): \qquad

Answer to Tiebreaker:

> 2018 ARML Local Tiebreaker
> (10 minutes)

For all nonnegative integers c, let $f(c)$ denote the unique real number x satisfying the equation

$$
\frac{x^{5}+x^{4}-48}{x^{9}-1}=c .
$$

Compute $f(0) f(1) f(2) \cdots f(47)$.

Name: \qquad
Team: \qquad

Time to submit answer (seconds): \qquad

Answer to Tiebreaker:

> 2018 ARML Local Tiebreaker
> (10 minutes)

For all nonnegative integers c, let $f(c)$ denote the unique real number x satisfying the equation

$$
\frac{x^{5}+x^{4}-48}{x^{9}-1}=c .
$$

Compute $f(0) f(1) f(2) \cdots f(47)$.

Name: \qquad
Team: \qquad

Time to submit answer (seconds): \qquad

Answer to Tiebreaker:

> 2018 ARML Local Tiebreaker
> (10 minutes)

For all nonnegative integers c, let $f(c)$ denote the unique real number x satisfying the equation

$$
\frac{x^{5}+x^{4}-48}{x^{9}-1}=c .
$$

Compute $f(0) f(1) f(2) \cdots f(47)$.

2018 ARML Local Contest: Sponsored by Star League

Question Writers:
David Altizio, Paul Dreyer, Edward Early, Zachary Franco, Chris Jeuell, P.J. Karafiol, Jason Mutford, George Reuter
Question Editor: Andy Niedermaier
If there are any questions about the contest, please contact the ARML Local Head Coordinator ASAP.

Contact Information
Paul Dreyer, ARML Local Head Coordinator
E-mail: ARML.Local@gmail.com
Cell: 310-383-3499

Mailing Address:
ARML Local
c/o Paul Dreyer
809 Harvard Street
Santa Monica, CA 90403

