Funny Factorials and Slick Sums—Solutions

Spring 2017 ARML Power Contest

Problem 1. We apply the definition of A to each function.

(a) f(z+1)— fla)=c—c=0.

(b) flz+1)— f(z )—a($+1)+b—(aas+b) = a.

(c) flz+1)— flx)=(x+1)>?—a3 =23 +3a: +3r+1—a%=32%+3x+ 1.

(d) flz+1)— f(x) =271 — 22 =2.2% — 22 = 2% The exponential 2% is invariant under
the operation of A.

Problem 2. Again, we simply apply the defintions.

(a) 22 =x(x —1)(x —2) = 23 — 322 + 2x.

(b) 94 =9-8-7-6 = 3024.

(c) Avt=A@?>—2)=(z+1) - (z+1)—(2®*—z)=2?+2x+1—2z—1— 2’ + 2 =2z

Problem 3. Recall that recursive defintions must have a base case and a recursive formula
that computes each value in terms of previous values. So we define:

o 1 n=>0
Sl = (z—n+1) n>0"

Problem 4. We use induction. If n = 0 then ™2 = g = pm . | = gm0 = pmgn

Then, inductively assuming the formula is correct for n — 1, we compute xﬁ =
gD — gmt =l (g — (m + (n — 1))) by the recursive definition. Then the induc-
tive assumption tells us this equals z(z — m)"=L(x — (m + (n — 1))). The last term in this
product can be rewritten as ((x —m)—n+1), and (z —m)>=L((x—m)—n+1)) = (x—m)2 by
the recursive definition. Substituting this into the expansion for ™™ then gives the desired
result.

Problem 5. We use induction again. When n = 0 then both sides of the proposed formula
evaluate to 1 so the proposition is verified in the base case.

Now, inductively assume the formula is true for n — 1. Then (—z)2 = (—x
(—2)X(—z — 1)2=L by the result of problem 4. From the base case, we know that the first
factor is simply —x, while the inductive assumption tells us the second factor is (—1)""!(z +
1 +n —2)2=L Multiplying these together gives (—1)"(x +n — 1)2=L. z. Of course, x can be
rewritten as (z +n — 1) — n + 1. Substituting this into the previous expression and using
the recursive defintion of (z +n — 1) we obtain the desired result.

)1+n—1 —



(There are certainly other ways to arrive at this result. A direct induction, not using the
factorial law of exponents will work, though the notation gets even messier than the above.
Using the relationship between falling factorials of x and rising factorials of —z is also a good
approach—if you remembered to properly define rising factorials and prove that relationship
as the questions packet noted.)

Problem 6. Actually, as stated the proposition is not quite true when n = 0. That is
because =L has not (yet) been defined, so technically 0 - =L is also undefined. (If you
wrote this, you will receive full credit for this problem; you will also earn full credit for the
following.) On the other hand, whatever z=! is, clearly multiplying it by zero will produce
zero. Of course, since 22 = 1 is constant, problem 1(a) tells us that Az is zero also, so the
proposition is proven if n = 0.

Now if n > 0, we can directly compute Az = (z + 1)% — 2% = (z + 1)Hn=l — pn=ldl
Now apply the factorial law of exponents to the first term and the recursive definition to the
second term to obtain (x 4+ 1)4(z +1 —1)2=L — 2=z — n +1). Since (z + 1)} =z + 1 and
r+1—1=x we can simplify this expression to (z + 1)z2=L — (x — n + 1)2"=L and factoring
out the 22=1 leaves the desired result.

Problem 7. We mirror the definition from problem 3:

1
T n=1
—-n X
T— = —(n—1)
xi
n>1
xr+n

Problem 8.
(a) If n = 1 then the statement is true by the definition of z=L. Now assume the statement is
true for some positive n — 1. Then by1 definition, 2= = 2=("=Y /(x4 n). Using the inductive
(x+n—1)2="2(z+n)
the factorial law of exponents then shows this last simplifies to 1/(x 4+ n) as required.

Of course, the statement remains true if n is negative or zero, it just requires a few more
steps to prove.

. Writing (z + n) = (z + n)! and applying

assumption this becomes

(b) First, the proposition is already proven if neither m nor n is negative. So we’ll show the

cases where both are negative or where just one is negative. So let m = —a and n = —b
1
both be negative, so that a and b are positive. Then ™" = poloft) =~}
By POSIEY (@ +a+ba
1
art (a). As proven in problem 4, we can write this as . Using part (a
part (a). Asp p Tt it a)e g part (a)

again gives us (r + a)=2x=% = (x — m)2z™.



Next, let m be positive, n be negative, and let m = —n + k where k£ > 0 so that
m+n = k. Then the left-hand side of the proposed identity simplifies to 2%. The right-hand
side is 2="**(z + n — k). Since both —n and k are positive, we can apply the result in
problem 4 to split the first term into two parts, yielding z&(z — k)=2(x + n — k)2. Applying
the previous part of this problem to the middle factor in this expression turns that factor

into ﬁ and this cancels the third factor leaving only the first term in the product,
rT+n—k)2

2% as desired.

The proof when m is positive (or zero), n neagitve but larger in absolute value than m is
nearly identical, by writing n = —m — k where £ < 0. Now the left-hand side of the formula
is =%, The right-hand side is 2(x — m)="=%. Then we apply the rule for negative falling
exponents from part (a) to the second term, and the result of problem 4 to the resulting
denominator. Applying the rule in part (a) and the result of problem 4 to the terms in the
denomintor will now give the desired result, just as in part (a).

(¢) We proceed in a manner similar to the proof in problem 6. Az=" = (z + 1)=2 — =2 =

1 1 z+1 r+n-+1 .
— = — . Both denominators
(x4+n+12 (r4+n)2 (r4+n+1)2(z+1) (z+n+1)(xz+n)2
simplify to (z + n + 1)2* so the whole expression becomes - R

(x +mn+1)ntL
Problem 9. Similar to the other recursive problems we’ve seen, we need

_ | f(0) n=1
Snfl) = { S, 1 f(2)+ fn—1) n>1

Problem 10. Thisis 04+ 142+ ---4999. Using the summation formula for an arithmetic
series yields 999 - 1000/2 = 499500.

Problem 11. We proceed by induction. Since Af(z) = f(x + 1) — f(z), when n = 1 we

obtain S1Af(x) = f(0+1) — f(0) = f(n) — f(0).
Now assume that S, 1Af(z) = f(n—1)— f(0). Then S,Af(x) = S—1Af(x)+Af(n—

) =f(n—=1)=f0)+ f(n) = f(n=1) = f(n) = £(0).

Problem 12. While we could do a full induction, if we are smart we can use the result of

problems 6 and 7(c) to note that 2% = k—}rleki and then our result follows from problem 11
and linearity (to factor the constant = out of the S,).

Problem 13. One approach to this problem would be to multiply out all the falling factorials
and set up a system of equations to find a, b, and c. In this case, though, a simpler approach
is to substitute various values for z to obtain the equations. For instance, inserting x = 0
makes 03 = 02 = 02 = 01 = 0 so we learn immediately that ¢ = 0. Trying = 1 gives 13 = 1,
12=12=0and 11 =1s0o b= 1. Trying z = 2 makes 23 = 8,23 = 0,22 = 2L = 250 a = 3.
Thus, 2% = 23 + 322 + 1.



Problem 14. We are being asked to compute S,23. Using the result of problem 13, this
becomes S, (23 + 322 + z1). Now we can use problem 12 and linearity to evaluates this as
%‘né—l— n3+ %ng. (Note, all the falling factorials evaluated at zero yield zero, so are omitted.)

Problem 15. This is just brute force arithmetic on the previous answer: }lné +n+ %ng =
H(x(z —1)(z —2)(z — 3) + 4z(z — 1)(z — 2) + 2z(z — 1) = 2(z* — 62% + 112? — 6z + 42® —
1227 + 8z + 222 — 2z) = 1(z* — 223 4 2?), or, if you prefer it in factored form, 1z%(z — 1)2.

Problem 16. We are asked to find S,,a”. From the formula for Aa® we divide by a — 1 to
discover that a” = —=Aa”. Applying S, to this yields S,a® = -5 5,Aa” = L (a" — a°) =
a®—1
a—1"

Problem 17. One last induction! The statement is clearly true when n = 0. So assume
the statement true for n — 1. Then for n we have

(x+y)2 = (r4+y)"“Yo+y—n+1)
n—1
—1
- Z (n . )x’“y”_l_k(x +y—n+1)
k=0
n—1
n—=1\ p o1k
= Z i yt——((x —k)+(y—n+1+k))
k=0
n—1 n— 1
= > ( i )(l’k(l’ — k)y = oty (y —n 1+ k)
k=0
n—1
_ Z (n — 1) (xkilyn—l—k _|_ Jfkg/n_k
k

n—1
-1

satisfy the recurrence (Zj) - (”;1) = (Z) which gives exactly the sum we are looking for.

where, as per the usual convention, ( ) = (";1) = 0. Of course, binomial coefficients



