
Funny Factorials and Slick Sums

Spring 2017 ARML Power Contest

WARNING! In several of the problems, you may be tempted to
use an ellipsis (“. . . ”) to shorten arguments or to indicate that a
pattern continues. DO NOT do this. All proofs must be complete.
Ellipsis probably means you need to use induction or recursion.

Let f(x) be any function whose domain is the set R of real numbers. Create a new
function ∆f(x) which is defined to be ∆f(x) = f(x+1)−f(x). So if, for instance, f(x) = x2

then ∆f(x) = (x + 1)2 − x2 = 2x + 1. We will treat ∆ as an operation that takes in
functions and gives out functions—a kind of superfunction whose domain and range are
regular functions.

Problem 1. For each function f(x) below, compute and simplify ∆f(x).
(a) f(x) = c, where c is constant.[1]
(b) f(x) = ax + b, a linear function.[1]
(c) f(x) = x3.[1]
(d) f(x) = 2x.[1]

As part (c) of this problem demonstrated, ∆ doesn’t play particularly nicely with powers
of x. But there is a variation of factorials that ∆ does treat nicely. For any positive integer
n, define xn by the formula xn = x(x− 1)(x− 2) · · · (x− n+ 1). It’s kind of a cross between
the nth power and a factorial. The underline is meant to remind you that the things you
are multiplying together keep decreasing. You can pronounce this as x to the nth falling or
the nth falling factorial of x. It will be convenient to define x0 = 1. There is a similar rising
factorial xn = x(x + 1)(x + 2) · · · (x + n− 1).

Problem 2. Expand and simplify each of the following.
(a) x3.[1]
(b) 94.[1]
(c) ∆x2.[2]

Problem 3. In keeping with the warning at the beginning of the problem, write a proper[2]
recursive defintion for xn for all nonnegative integers n.
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We can make a few observations about falling and rising factorials. For instance, if n is
a nonnegative integer, then nn = 1n = n!, while if m > n are both nonnegative integers then
nm = 0. Also, xn = (−1)n(−x)n where the exponent on the (−1) is a regular power. While
all these appear more-or-less obvious, if you want to use one of these facts in your solutions,
you will—for completeness—need to prove it as a lemma.

We will treat falling and rising factorials like regular exponents with regard to order of
operations. So, for instance, (−5)3 = (−5)(−6)(−7) while −53 = −(53) = −(5 · 4 · 3).

Problem 4. Prove the factorial law of exponents: xm+n = xm · (x−m)n for all nonnegative[2]
integers m and n.

Problem 5. Prove the symmetry law (−x)n = (−1)n(x+n−1)n for all nonnegative integers[2]
n. Note that the exponent on the (−1) is a regular exponent, not a factorial exponent!

You might have noticed that ∆x2 from problem 2(c) was less messy than ∆x2 or ∆x3

that we calculated earlier. Falling factorials were created to make nice formulas with ∆.

Problem 6. Prove that for any nonnegative integer n, ∆xn = nxn−1.[2]

We can define falling (and rising) factorials with negative exponents in a manner similar
to the definition of negative powers. Note that to get from x3 to x2 we divide by (x − 2).
Then we would have to divide by (x− 1) to drop the exponent to x1. And we divide again
by x = (x− 0) to lower the exponent to x0. It seems that we should now divide by (x + 1)
to get to x−1. That is, it looks like we should define

x−1 =
1

x + 1
,

x−2 =
1

(x + 1)(x + 2)
,

x−3 =
1

(x + 1)(x + 2)(x + 3)
,

and so forth.

Problem 7. If n is a positive integer, provide a recursive definition for x−n.[1]

Problem 8.

(a) If n is a positive integer, prove x−n =
1

(x + n)n
.[2]

(b) Prove that the law of exponents as in problem 4 continues to hold for arbitrary integers[2]
m and n.
(c) Prove that the ∆-rule from problem 6 continues to hold for negative integers.[2]

2



Let n be a positive integer and f(x) a function. Define an operation Sn by Snf(x) =
f(0) + f(1) + · · · + f(n− 1). Be careful to note that there are exactly n terms in this sum,
running from 0 to n−1. For example, if f(x) = 2x then S5f(x) = 20 +21 +22 +23 +24 = 31.

Problem 9. Define Snf(x) recursively.[2]

Problem 10. Compute S1000x.[1]

Problem 11. Prove, for any n and any function f(x), that Sn(∆f(x)) = f(n) − f(0).[2]

You may assume—it is not difficult to prove—that both ∆ and Sn, for any n, are linear.
That is, given functions f(x) and g(x) and constants a and b, that ∆(af(x) + bg(x)) =
a∆f(x) + b∆g(x) and Sn(af(x) + bg(x)) = aSnf(x) + bSng(x).

Problem 12. Prove that Snx
k =

nk+1 − 0k+1

k + 1
where k is any integer other than −1.[2]

Problem 13. Compute the values of constants a, b, and c so that x3 = x3 +ax2 + bx1 + cx0.[2]

Problem 14. Use the result of the previous problem to compute 03 +13 +23 + · · ·+(n−1)3[2]
in terms of falling factorials.

Problem 15. Expand the terms of your solution to the previous problem to express 03 +[1]
13 + · · · (n− 1)3 as a polynomial in n.

It is similarly possible to easily obtain expressions for the sums of squares, fourth powers,
or any other (positive integer) powers of x, as long as there is a convenient way to convert
back and forth between polynomials and falling factorials. To do that efficiently, you need
Stirling numbers, which might be a topic for a future ARML Power Contest.

Problem 16. Note that ∆ax = a(x+1) − ax = (a − 1)ax. Use this to obtain a formula for[2]
the sum of a finite geometric series 1 + a + a2 + a3 + · · · + an−1.

Problem 17. Prove that the falling factorials satisfy the binomial theorem: for nonnegative[3]

integers, n, (x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.
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